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. The purpose of this monograph is to provide a_concise

dintroductiofi to the theory of genera11zed inverses of
matrices that is accessible to undergraduate mathematics
majors. Although results from this active area gof research
have appeared in a number of excellen; graduate level text- -
. books since 1971, material for use at the undergraduate
level remains fragmented The basic ideas are so fundamental,
howgver, ‘that they can be used to unify various topics that
an undergraduate has seen but perhaps not related.
) Material in this monograph was first asdembied hy the
, . author as lecture notes for the senior seminar in thematics
at the University of Tennessee. ., In this iemlnar one)meetlng
' per week was for a lecture on the subJect matter,vand anothet
‘ meeting was to perm1t stidents to present so%utlons/to'
exercises} Two major probléms were encountéred the first
»quarter the seminar was given. )These were that some of the
. students had had only the required one-quarter course 1n
matrix thedry and were not sufficiently familiar with .
emgenvaLues, e1genvectors and-related concepts, and that many
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of the exercises required fortitude. At the suggestion of .
the UMAP Editor,'the approach'in\fhe present monograph 1s
(1) to develop the material in terms of full rank factoriza-
tions and to relegate all discussions using efgenvalues and
eigenvectors to exercises, and—(Z) to include an appendix of
bints for exercises. In.addition, it was suggested that ghc
order of presentation be modified .to provide some motiiation
or considering generalizedlinverses béfore developing the
lgebraic theory, This has been accomplished by introducing
he MoorefPen}ose invgrgi_df a matrix and immediately
exploring‘its use in characterizing particular solutions to
systems of equations before establishing many of its algé-
braic properties, * .

2

To prepare a monograbh of limited length for use at the
undergraduate level precludes giving extensive references to
original sources. Most of the ma%erial can be found 1in
texts such as Beangrael and Greville [2] or Rac and Mitra
{111,

Every career is always influenced by colleagues. The
author wishes to express his appreciation particularly to
T.N.E. Greville, L.D. Pyle and R.M. Thrall for continuing
encouragement and availability For consultatiqn.

Randall E. Cline
Knoxville, Tennessee
’ September 1978
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L Introduction
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'K 1.1 Preliminary Remarks .

The material in this monograph requires a knowledge of
basic matrix theory available in excellent textbooks such as
Halmos [7), Noble [9] or Strang [12] Fundamental definitions
and concepts are, used without the Hetailed discussion which
would be included in a self-contained work. Therefore, it may
be helpful to/have a standard linear algebra textbook for
reference if needed, ‘ 4

, Many examples and exexcises are included to. 111ustrate
and complement the topics discussed in the text. It is recom-
mended that every exercise be attempted. Although perhaps

not always Successful, the challenge of distinguishing among
what'can be assumed, what is known and what guust be shown is
an 1ntegra1 part of the development of the nebulous concept
called mathematical maturity. )

|
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0 denote matrices and small Latin letters denote\column vectors.

[

matrices hav1ng a 51ng1e column) are assume& to ave complex |
f ~numBers as elements. Also, sizes of matrices gre assumed to
~ be afbitrary, subject to conformability in suys and producté.
"For 5xamp1e, writing A+B tacitly assumes A and B have the
same 51ze, whereAs AB implies that 4 is m by n and B is n by
p for some i, n and p. (Note, however, that even with AB —
defined, BA is defined 1f and onl} if m*= p.) The special
symbols I und O are used. to denote the n by n identaty matrlx,
and, the m by n null matr1x respectively, with sizes deter-
m1ned by the context «hen no subscripts are used If it is
1mportdnt to emphasize 51ze we will write I or 0

mn’ v
‘For any A = (aiJ), the conjugate transpose.of A is v
written as AN, Thus A (a ;)» where Eji denotes the con- .

jugate of the complex scarar aJ » and if x is a column vector
with compogents xl,...,x. then xH is the row vector
H — -
= (Xyye..X_). N
o (X)see-Xp) , )

Co, SEQuently, for a real matrix (vector) ‘the superscript "H"
dehotes transpose

. Given vectors x and y, we wr1te the inner product of x

and y as
N
. n
H = -
. o =y = TRy ,
. i=1 e
Since only Euclidean mbrms’' will be considered, we write ||x|]
without a subscript to mean ® v .
\ t 2
\ AIxI = +TGRY = 4 21|xi| . ' .
. 1:

. v
To conclude this seetion it is noted that there are
certain comcepts in the previously cited textbooks which are )

N \ “ " '
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either used implicitly or discussed in a mannet, thit does not
emphasize their importahce: for present purposes. ' Although
sometimes slightly redundant, the decfion to include such

topics was based upon the d%i:e to streéss fundamentai»
,understanding.

Exercises

i.1 Let x be any m-tuple and y be any(h-tuple.

[ .
a. Form xyH and ny.

N ] -

‘
b. Suppose m = n and that neither x nor y is the zero vectar.
Prove that xyH is Hermitiap if and only if y = gx for some real

scalar a. -

1.2 Let A be any m by n matrix with rows aﬂ me and columns

TEEEFE and let B be any n by p matrix with rows y]H ...,ynH and

I r'd
columns z;,. LA 14 R
5 a. Provefthat the produc‘KAB can be wr?tten as
« (zl ’wl) . e (zp'wl) s
v €
< AB = e . . .
- J . v
v zpw) L (zw,) . -
\ .
and also as r ¢ o . ' .
. . Y \‘ .
AB = Z XY H. ’
’|=] N . L4
— - .

b. Prove that A= 0 if and only if either A"A = 0 oy AAY

c. Show that BA A = CA A for any matrices A,B and C implies

At = At ‘

4

°
*1.3  Let A be any normal matrix with eigenvalues Al

.

,...,An and ortho-~

L

normal eigenvectors X,,...,x .
1? n

.

-

*Exercises or portions of exercises desngnated by an asternsk assume
a knowledge of eigenvalues and eigenvectors.

+

f




A -
2 1.4.) ¥n this case X = A

3
a. Show that A can be written as

.

Z A %% H. . . R

’

\\ b IfE, = x,x ”,i-l,...,n, show that E} is Hermitian and. idem-

potent, and that B, = EE, = 0 for all i #j. & .

c. Use the expression for A in 1.3a and the result of 1.3b to

conclude that A is Hermttnan if and only if all eigenvalues
. 4

-

X are real .

» K

LY
1.3 A Rationale for Generalized Inverses

t

> ~Given a square matrix, A, the gxistence of a matrix;. X,
such that AX = I is but one of.many equivalent necessary and o
(See Ex

is the unique two-sided Anverse of

sufficient conditions that A is nonsingular. .
1

se

A, and x = A'lb is the unique solution of the linedr algebraic ¢
sy;tém of equations Ax = b for every right-hand side b.

speakxng, the theory of general;zed inverses of matrices is .

Loosely

concerned w1th exténd1ng the concept of an inverse of a square
nonsingular matrix to 51ngular matrices and, more generally,

‘to regtangular matrices by considering various sets of equa-
.

tiong whigh A and X may be required to satisfy. for’th1§

ﬂurpose wé will use combinations of the follow1ng f1ve fhnda-

mental equations:

>
A

(1.1) AkXA = Ak, for some positive integer k,
(1.2) " XAX = X, ) -

H « k3 - . -
(1.3) a0 = ax, .,
(1.4 (xaft ' , . Y
(i 59 AX = XA. '

-(1.2),

(e sm d be noted that (2.1) with > 1 and (1 S)'implictitly
assume A and .X' are square ma}rlces, whereas (1 1) with k = 1,
(1.3), and (1.4), require only that X has the size of A

. Also, obserwe that all of the eQuatxons clearly gold when A

[E
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.
, Ix3 ~ .

- _is square and nonsingular, and X = A'i.) Given A and subsets
of Equations (1¢1)-(1.5), it is loglcal to ask wheth r a
solutlon X exists, is it un1que OW can it be con§tructed

. and what propartles does. it have? These are the basic ng%-

tions to be explored in subsequent chapters

In Chapter 2 we establish the existence and unidueness
of a particular generalized inverse of any matrix A (to be -- -
called the Moore-Penrose inverse of A}, and show how this
“inverse can be used to eharacterize the minimal norm or least
. 5qﬁares solutlons to systems of equatlons Ax = b when A has
£u11 row rank ot full co}umn rank. . Th1s.1ﬁverse is then
furtherSexplored in Chapte; 3 where many of its propertles
‘avre derived and certaln dpplications’ dlscuSsed In Chapter 4
we consider another un1que generallzed inverse of square
- mdtrices A (called the Dra21n inverse of A)r.and relate thi‘s »
1nweyse to Moore-Penrose inverses. The concluding chapter is, '
to previdéyitbrlef introduction to the theory of generalized *
inver§es that are mot unique.

K . RN

Exercises - . .
f 1.4 For any A, let N(A) denote the null space of A, that is, . :
; o MA) = im0y T ‘ o
i a. IF A -is .a n by n matrix,‘ show that the following\c’ondi‘tions
* i are equivalept:
f‘ (i) A is nonsingular, . '
’ . ¢ MA) contains only the null. vector,
A (,lll) Rank (A) =n, ‘ .,
: ‘ (iv) A has a right lnvergs 4 }
T () Ax = b has a unique so«lutlon for every right-hand :
, - side b. ~
L ‘ b. - What other equivalent’statement's can be added‘to this list? N
1.5 Let A ,
opoaa i TUo-1 a4y
P 1 2 1 I 0. 0 -1
R TP L e PR o 1|, .
2 | T T I 1 0 0 1 -l BN
. . - ‘ .

f
. . f ?
JAFuiext provided by ERIC ] f .
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Let x be any vector with [|x]| ="T"and let k be any real number.

a.

b.

3
3

T.
d.

*e,

*f,

1 3
'n>2“what LSA

‘an integral solution x..

Show that X = A,’-‘.

If AS is the five by five matrix obtalned by extending A,’ in

the obvious manner, that is, AS = (a. ) where . .

. 2, if i = j-1, e . -
aij =

— 1, otherwise, . \

-1
form AS . More ngera‘_Lb/ gnven A of this form for any

‘?
: v
P.rove that An s unimbdular for all n > 2, that is, “
|det AL =1, ) . ’
Show that any system of equations b with b inteq‘r":al has

Y 4

.. M

Show that A = [ + ko *i's nonsingular for all k # -1.

Given the forty by forty matrix A = (aij) with

B 7, if i=j, .
ai' J L -
J I, otherwise, ‘ -

construct Al

' o

\ .

Show that A in 1.6a is an involution when k = -2,
r -

Show that A is idempotent when k = =T,

Show that A has one eige;walue equa1 to I+k and all other
eigenvalues equal to unity. (Hint: Consider x and any 've&or

y orthogonal to x.) ,

. .
Construct an orthonormal set of eigenvectors for A.in 1.6b.

1
Given the following pairs of matrices, show that A #nd X satisfy
(1.1) with k = 1, (1.2), (1.3), and (1.4).

a.

‘ L]
1 ~1
1 0 2
A= , X=1/1010 0j;
-1 0 -2
. P
- »
. . .
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~

¢

‘o, .

A=

1
2

1

2 .

2‘], X = 1/5|~E6 th -7 3};
i 15 -6 3 6
1.

* . 0 1 .
A R IO L
o 3 6 2 6

1.8  Show that the iatrjges -

[-z. -5
L

’ 1 2
P A"

2

AN
; [1",1_'?

-6 =4, 4 -5 -4 -3

", - "
Vol a2 22

2
b2 11 2 )
0

D

1 0 0 o

-

. satisfy (1.1) with k = 2, (1.2) and (1.5).
N "(" -
r,;r‘_ : .
. »
;.
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Systems of Equ’at/ions )

. and the .

Moore Penrose Inverse
of a Matrlx

e

2.1 Zero, One of Many Solutions of Ax=b

Given.a lihear algebralc system of m equations “in n
unknowns written as Ax =b, a standard method to determine the
:number of solutions is to first reduce 'the augmented matrix
[A,b] to row echelon form. The numbé€r of solutions is then

characten;zed by relations among the number of unknowns ,

rank (A) and rank ({A,b]1). In part1cular Ax=b is a consis-
tent system of equations, that is, there‘exlsts at least one
solution, if and only if rank (A) = rank (I[A, b]j Moreover,
a consistent system of equations Ax=b has a unique solution
if and only if rank (A} =n. On the other hand, Ax =b has noe
exact solutien when rank (A) < rank ([A,b]). It is-‘the
purpose of this chapter to show how the Moore-Penrose inverse
of A can be msed to d15t1ngu15h amongrthese three cases and *
to provide alternative forms of representat10n§ which are 3
frequently employed in each case.

For any matrix, A, let CS(A) denote the column space of
A, thatds,




ta

cs(A) = {y|y=ax, for éome vector x},

| ‘
L- Then Ax'“b a consistent system of equations implies beCS(A) "
' and conversely (which 1is a&Fply another way of saying that A

and [A,g] have the 'same rank). Now by definition, \
vand if .
’ t N(A) = {z|Az= 0)

+

denotes the nu11 space of A'(Cff Exercise 1.4), then we have

|

|
L rank (A) = dimensmn,.(csu)), .
the well known relation that

« rank (A) + dimensién (N(A)) =

biveﬁ a consistent‘éystem of equations Ax=b with A m by
| n of rank r, it follows, therefore; that if r‘=n, then A has
j full column rank and x = A/b is the unlque solution, “Where AL
j% is any left inverse of A, The problem in this case i thus
B to construct Ab. o

;. - However, when r < n, so that N(A);Eonsists of more than
only the zero vector, then for any solution,’ %J’ of Ax = b,
aqy vector zeN(A) and any scalar a, Xy = X *taz is also’a solu-
' tion of Ax = b.* Conversely, if Xy and X, are any pair of
solutions of ‘Ax = b, and if z = x; - x, then Az. = Ax; - Ax,
=b-b =0 so that zeN(A). Hence all solutions to Ax = b in'

this case can be written as o .
‘ n-r o ’ R
(2:1) X = x; + 1._§10le1 | ‘ . .}
*  where Xy is any particular solution, zl,...,zn_r are’ 'gﬁ*,
of vectors which form a basis of N(A) and’al,...,un . are ’f?&x
arbitrary scalars. " > .

eRlc. R




Given an inconsistent systgm of equatioﬁs Ax = b, that
is, where rank (A) < rank [A,b] so that there 1s Do exact
solutlon,,a frequently used procedure is 'to eonstruct a vector
X, _say, which is a "best’ approx1mate" sblutlon by some
criterion. Perhaps the most generally used criterion 1s that
of least squares in which it 1s required to determ1ne 'R to
minimize |]Ax \ b|| or, equlvalently, to m1n1m1 e ||ax - b||
In this case, if A has full column rank, then X = (AHA}qlAHb
is the least squares solution (see Exercise 2.7). '

¢

. . 4 . hd
Exercises

2.1 Given the following matrices, Ai’ and vectors, b;, determine which

of the sets of equations A‘x = b have a’unique solution, infi-

» nitely ny solutions or no exact solutlon, andrconstruct the '
unique solutions when they exist, o ) ‘j .
o 12 7] -8] (i) -2 1,
A] = bl I 3 bl = ft=bi; Az =11 0}, b2 =(11; '¥
« L& -3 1] - |6] 3 6 ?
i (1::)-——«—3:_~ I. 0] 67 (iv) rIERER
A3= 0o 3 1 ’ b3= 2 . : A"= 3 1 0/, bl,= b,
5 725 81 0 -1 5],
|1 0 3] | 2 ] .
. W) 2 1t - Wby éz '
A5= 1 o0 'l”’s’- 2{;~ Ag = 2 0 ,b6 i
3 1 0] 1-5] !

2.2 For any partltloned matrlx A= [B R} with B, nonsnngular prove that
cotumns of the matrix

‘] - B ."J 3 ‘A,ﬂ
, ;|8 R K L
. . I . <

a v 3

3
2 L. K3
form a. basis of N(A). . i .
2.3 Construct a basls fog' N(A6) in Exercise 2.1. ) ,
N : '1 e 1 ."
1 ) L
| Q ' . 18 ' \ B

Aruitoxt provided by Eic
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/ 1)
2.4 Apply the Gram-Schmidt process to the basis in Exercise’ 2.3 to

construct an orthonormal basis of N(Aé)n

2.5 /Show that if z, and zé are any vectors which form an orthonormal

basis of N(Aé),and if all solutions of A6x = b6 are written as

XEX PO T Gh
where
H i .
=3z 0 -1 1 2],
>
. . then Iallz + ]azlz = | for every solution such that HxII2 =25/2h.

a

2.6 Show that A, A'a and AA" have the same rank for every matrix A,

>
2.7 a. Given any system of equations Ax = b with A m by n and
rank (R) = n, .show by use of calculus that the least squares

solution, x, has the-form X = (AHA)'IA“b. Suppose m = n?

b. Construct the least squares solution of Ax = b if
1 2 3
! A=|1 0|],b=|11]. {
11 -
' ¢

2.2 Full Rank Factorizations and the Moore-Penrose Inverse
< > B N
Given any matrix A (not necessarily squar.&), it follows

at once that if X#is any matr1x such that A and X satisfy (1.1)
w1t1}k 1, (1 2), (1.3) and (} 4), then X is unique. For if
)

(2 AXA = A, XAX.£ X, (A0OF = ax, -yt - X4,

and if A and Y also sat1§$y these equatlons, “then

A

XAX ='X(AX)”“= xal 2 xxHoayayt

xxalan® < xay = By £ afxlly ]

avayixy = ova)Paxby £ yaxag = vay = Y.

X

A\ X

Now if A has full row rank, then with X any right inverse of A,
AX = I is Hermitian and the first two equations in (2,2) hold,
Dually, if A has full column rank and X is any left inverse of
< -12- o e
ic 19 o
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A, XA =1 is Herm1t1an and agaln the first' two equations in
(2.2) hold As shown "in the following. lemma, there is a °

* choice of X in both cases so that all four conditions hold.
i

+ LEMMA 1: Let A be‘any matrix with full row rank or full
column rank. If A has full row rank, then X = A (AAH 14
. 'the unique right inverse of A with XA Hermitian. If A has
\ full column rank, then X = (A A) JA is the unique left

inverse of A with AX Hermitian. B

‘ Proo_’f"C If A is any matrix with full row rank AAH is non-
51ngu1ar by Exercise 2.6. Now X = AH(AA ) is a right
inverse of A, and '

oyl = [AH(AAH)'IA]H = Aaat) 1a = xan
Thus A and X sgtisfy the four equations in (2.2), and X is

unique.

S (T " The dual relationship when A has full column rank follows
. in an analogous manner with AHA nonsingular. .

It should be noted that X = A~} in (2.2) when A is square .
and non51ngu1ar, and that both forms for X in Lemma 1 reduce

“ to A -1 in this case. More generally, we will see in Theorem 4
that the unique X in (2. 2) exists for every matrix A. Such
an X is called the Moore-Penrose inverse of A and is written

A*. Thus we have from Lemma 1 the special cases:

AHeaathy =1 ¢ A has full row rank,
(2.3) At = ' 0
° (ABa) 1AM £ A has full column rank.

Example 2.1

. 0 -
e e ]
) ] “10. 1 1 L 2 o -1 2
' ;ﬂ%nd so{ ‘
T2 -1 .
Ay = g[-1 2 ' :
\ [ ".bl 1 ‘ (
- 1 ] '3 _13_.
\‘( ~r A

‘,]EIQJ!:? - . 23(}

.
CEERETE ., - g . ‘
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o { / y 5
. A \
. . . ¢ L 2
lg/-/\<\ \/. \’ {I - .’ R N “
" Bxampld 2.2 o I N c. '
.( ' I a' I »’ ¢ )
If y is 'the column vector: ¢ (o
- df Yoo -
. 1 . 4 "'r.’!]’ .‘ : ', :
_ . 2+i , v{‘g ‘[ . .
0 “ . /' . {. B . ! N . '
IR IS 1) oL .
. N - W -
" then ﬁ : ’ ;
+ 1 . ) . ¢ A N )
y =g 1 2-d 1oowes R i

"
e

-

-

d . i
. with Z any matrix withén-
. At dn ‘this case gives 1 heo n Q

‘ THEOREM 2: For any sysfe

A FuiText provided by Eric
[

Note in general that fg
.row or column vector i
vector multiplied by t
léﬂgth

imply the conJugate transpose _ of the .
rec1proca1 of the square of 1ts "

v # , 0

. '

= Let us.next coﬂsJ r the’ g%ometfy of solving systems of
equatlons in terms oq 4 for the special cases in (2+3).
Given any system of eh ations Ax = be and any matr1x X, such.
that AXA = A, >1t falhowﬁ at once that the system is consis-
tent.i¥ and only 1&' g :

2.4) AXb ='b. 'é . ‘

For 'if (2.4) holds, theh x = Xb isa solution. Conversely,
if Ax = b is conslstent mu1t1p1y1ng each side oh the 1eft by
AX gives A£ AXAx = AXbu $6 that (2.4) follows. Suppose now,
that Ax = b is a system of‘m equations in n unknowns where A
has full row rank. Then Ax = b is always consistent since .
(2 4) holds with X any rlght inyerse of ‘A, and we have from

" (2.1) that all solutlons can be writfén as .

(2.5) X = Xb + 2y b .’;.& a .

$ 0 b .

-«-"'*’*‘

\ coiumns whlch ford a ba$1s of N(A)
and y gn arbitrary vec{or. Taklng X to be the r1ght inverse~

J
0

P

full row rank, x = A'b is
minimal. :

Nl

2




) % LR .
» Proof: With X =.A" in*(Z.S‘),

~ v ° .
< . 4\ «

L T e ow = b+Zy A’*b+Zy) i ‘
/' ’ o 2Q S 2
.o AT+ aray) = AP i)
"~ - since 'g C. X : ) |
. AN 1 el ) |
(Abe) (A(M)bzf)-((AA)bAZy)=0. .
o, ., *Ps
ThUSs oL o O '
. N + -'2 , R e 2 .
. Lixl1? > 1 1A% 12, . s moe e
LT . A
where equality halds if and aonl‘y if Zy = ql l‘\
Examg’le 2.3 . . Ll ,_‘:'-u’ ! ‘
i tif A 1s the’ matrlx in Example 2.1 and‘b [54], then ’
k Iy 14 . Y ? ) L ] ]
b x = A'b = 3[-13 . T )
1 ) > g ¢ ' “ .
5 . .
is the mmlmal norm solutlon of Ax ="b wrt‘ii Jlxll 4122
o4 It was noteéd in Section 2, 1 that the- leas't _squages solu-

tion of an 1ncon51stent system of equ&t10Q§ Ax ‘b when A has’
full Column rank is ¥ = (AHA) "1pHp From"(z ﬁ‘g\re have,
‘therefore, that x = A'b is the least squares splutlon in this
case. Although this result can be establ‘ished by use - of
calgulus (Exercise 2. 7), the followmg d,er1vat.1on in terms of

- > ? *
- norms is more direct. ; a0

car
~ ° Ly ¥ Y ¢ “‘ ’
THEOREM 3: «F’orwany sysmgm of equatpns Ax ¢ b where A.has 4
ull cqlumn rarik; x = g\ b 1s the’ .urique’ vector with llb A)(Tl2
, mmmal & - ) o “v ) - -

\\ Prd‘of' If A is :ylua;'e ox; Af mes n\and Ax = b is consistent
) then w1th A a (Rﬂﬁ] A4 1eft tnvers@ of A and AA b = b, the

- vector X = A b 154t.hek‘ﬂn1que solution with. ||b- AxII . on ,
" the other hand, if m 5 h -and Ax = b is ‘1ncon51stent .

s ~ . ? -
' leﬂF=lHIM»bekMH”" S

=Hbeﬂ2IMu+buﬁ~\ .

, SRS RN -
- @ :
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. since AH(I AA") = 0. Hence []b- Axll ||b AA.bJI where
equality holds if and only if ||A(x -A b)|| . But A with
full column rank implies ||Ay|| > 0 for any vectar y # 0,
in particular for y = x - A'b. J :
Example 2.4

1f .
> 2 A 1
» A= 1|1 1, b = 2+, '
" -1 0 3 ’
then
303 .21 -1 '°
| : + 1
A= TT[-4 ’ -l]’ AA 17|10 #b, ‘
-3 M
and ’
- 3
= A'p = 1 ¢ )
X—A,b 1—1-[7] r
. . .. ~ . 2 _ 144
¥s the least squares solution of Ax = b with ||b-Ax||® = Ir
minimal. .
- Having established AV for ,the spec1al cases 1n Lemma 1,
it remains to establish existence for the general case of an
arbitrary matrix A. For this purpose’we firs® require a
definition, ¢ i )
. X . :~ . [\
"7, DEFINITION 1: Any product EFG with E m by r,
¥ - F r byjr and 6 r. by n is called a full rank
factorization if’each of the matrices E, F and G
has ‘rank r. B :
e .
The' importance of Deflnltlon 1. is that any nonnull matrix can <

be expressed in terms of full rank factorlzauions, ‘and that
¢ the Moore-Penrose inverse of such a product is the product of
the corresponding inverse i reverse ordet,

'& .

To construct a full rank~factoriza{ion of a ﬁonnuiz
matrix, lét A be any m by n matrix with rank r. Desig
columns of A as as...,a . Then A with rank r implies that
there exists at least ome set~of r cqumn; of A which are

o " .16+ )
Q . ) B "y 1..?;r .
ERIC . T3 .
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AN
linearly independent. Let J = {jl,...,jr} be any set of
indices for which aj_,..s,85 are linearly independent, and

r ’
let E be the m by-.r matr1x N
E= (a, ,...,a. ].
( i Jr]

«

If r = n, 'then A = E is a trivial full rank factorization
(with F = G = I). Suppose r < n. Then for every column
j,jtJ there is a column vector yJ, say, such that aJ =’Eyj,

Now form the r by n matrix, G, with.columns gl, <es8p @S . v

fol;pws Let

Yi» if jEJ,
. J >
gj # v
_ ) e;r if j =jieJ, _
. ) { .
where>ei,i=1,...,r, denote unit vectors. For this matrix G,
we then have - N

EG = [al""’an] = A. ) -

Moreover, since the columns €lrseer€y of G forma r by r
identity matrix, rank (G) = r, and with rank_ (E) = r by con-
struction, A = EG is a full rank factorization (with F = I).

’

Th&tia full rank factorization A = EFG is not unique is
apparent by observ1ng that } M and N are any non51ngular,
matriges, then A = EM(M EN)N 16 is also a fuld rank factori-
zation. The follow1ng example illustrates four full rank
factorlzatlons of a given matrix, A, where F I in each case.

: Examgle ZUS ’ (! > .
Let _
2 0 4 24"6 ' g
"A¥ Pl o1 01 2 -1 ) .
-1 3 -5 2 -15 o
Then .

‘ 2 0 2 4

A ‘rl dproeoz o1 Y2 08-S
= =

01 -1 1 -4 J10 -11-1 4

-1 . -1 -5

KTC , | 24

- .

]




. e [ L . .
6 [-4/5 3/5 1 7/5 o] Rk ; -3 0 -7]

1 /5 -2/5 0 f3/5 1 c2 01 3]

_"S -

Using full rank factorization, the exygtence of thé Moore-
Penr&se inverse of any matrix follows at once. The following
theorem, stated in the form rediscoveredlﬁy Penrose [10] but
originally established by Moore [8], is fundamental to the
theory of generalized inverses of Tatrices. ‘

-

THEOREM 4: For any matrix, A, the four equations

.

AXA = A, xaX = X, ool =ax, ot -

have a unique solution X = A*. If A = 0. is the m by n null

matrix, A" = onm’ If A is not the nuil matrix, then for any

“ull rank factorization EFG of A, A* = ¢'FTlEY, N

L

“Proof: Uniqueness in every case follows from thé remarks
“after (2.2). )

.
+

i1f A= 0 , then XAX = X implies X = = 0 . If Ais

"nét the null matrix, then for any full rank factorization :
—
A = EFG it follows by definition that E has full column rank,

F.is nonSingular and G has full TRV rank Thus E* = (E E)'1 H

and ¢* = G (GG ) %, by (2.3), with EY a left inverse of E and
G' a right inverse of G. Then if X = G+F_1E+’ XA = 6'G and
= EE' are Hermitian, by Lemma 1. Moreover, AXA = A and

XAX = X, so that X = A*. 1

It should be noted that although the existence of a full
rank factorization A =, EG has been established for any non-
null matpix A, this does not provide a systematic computatignal
procedure for constructing a factorization. Such a procedure
will be developed in Exercise 3.3, however, after we have y
considered the relationship between A" and the Moore-Penrose
inverse of matrices obtained by permuting rows or columns or
both rows and columns of A. Observe, moreover, that if Ax = b
is any system of equations with A = EG a full rank factoriza-
t10n, and if y = Gx, then y.= E *b 1s the least squard.
solution to Ey = b, by Theorqg . Now the system of equations

= . -18-
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A8 .

Gx = E b is always con51stent and has minimal form solution
T X = G'E b by -THeorem 2. Consequently we can comb ne the s
; results of Theorems. 2 and 3 by saylng that X = A b is the
least squares solution of Ax = b with [[x|[ minimal.
Although of mathematicel interest (see, for example, Exercises
3.12 and 3,13), most practical applicatiohs of least squares -
require that problems be formulated in such a way that the
matrix A has full column rank. , N\

- \ -

Exercises . .

’ 2:8 Show that x]'/' A6+b in Exercise 2.5, ¢
2.9  Show thatr | if A is any ncnsungular matrix, then .
] . I H(akfypgty -! , .
: (A,8] He-1le -
8t (aat+g8 ), 1 .
. % . R
2,10 Let u bs the colum*vector with n elements each equal-td unity. .'
Show that - 5 o *
. ”
' \ f+ (ne )] ~uu
[E U = m N . [

: | N

. 2,11 a, Gl\,{% any real numbers b]....,b , show that all soluttons:t’o

n .
the quatlohs oy
s . S e
» L .. .o
P - AT, ‘= s -
. , x; X4l 4@1 l,: .\:\(n, . S e
N

- T . [}

can be written as

. n
xi-bl "-'-ill-fb’*'-u, i=1,...,n, 3
i) g
and
N 1 m' . . N 1 . -
= “Z b . 2
. . n*’-l‘.l

where o is - arbitrary,

P C b. For what choice of @ can we € the additional condition

that . .

L . -19-
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: . - o
c. Show that when the condition in 2.11b is imposed, xn-‘l
becomes simply the mean of bl""”bn’ that is, h
. .
) . | n A
%o =l by
i=1 \
'

4 .
d. Show that the problem of sol\ving tfe equations in 2.1la,
. subject to the conditions in 2.11b, cad be formulated

equivalently as a system of equations Ax = b with the ntl

)

by n+] matrix A Hermitian and nonsingular. .

2.12 Given any real numbers bl
™

,...,bn, show that the mean is the least
{7 squares solution to thg equations '
« . ¥

~

. 1

x=bi, i=1,...,n. ‘

2.13 If Ax = b is any system of equations with A = uv'f a matrix of rank *
ope, show that

b

{b,u) .
X = 3 F Vv ]
RIEIHE S

is the least squares solution with minimal norm.

“lebiLet Ax = b be any consistent systém of equations and let

zl....,.zn_r be any -set of vectors wh‘ich form an orthonormal basis
of N{A), where rank {A) = r. Show that if x is any solution of

. . Ax = b,

. . n-r e O -

Ab=x- Jaz
- = ' -
.. . ~. .,
with a; = (x,z.), i =1,...,n-r. .
' rd

2.15 (Continuation): Let A be any m by n matrix with full row rank, and

., .
let Z be any g by n-m matrix whose columns form an oMonormal ’
' basis of, N(A).- Prove that if X iiany right inverse of A, .
' ¢ i < N
, At = x -z N

-
* 2,16 Use the results of Exercises 2.4 and 2.15 to construct A6.+ starting
with the right inverse

X =

=X =2 A

‘2
-1
0
0

PR -20-
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"- 2.3 Some Geometric Illustrations

"In this section we illustrate the geometry of Theorems 2
and 3 with some diagrams:

»

Consider a single equation in three real variables of

the form b
c (2.6) 319X * ag3oxy ¢ a)3Xs =‘b1. . \

* Then it is well known that all vectors xH = [xl,xz,xsl wh1ch
satisfy (2.6) is a plane P (b ), as shown in Figure 1. Now

the plane P (0) is Xy

)
\ )
Xy . ;
- . .J — :
Figure 1. The plane Pl(bl) and solution x.
parallél to Pl(bl), and consists of all solutions »

zH = [zl,iz,zsl to the homogeneous equation.’

(2.7) fllzl tag,zy t 31323 = 0.
Then if bl.# 0, all solutions xeP (bl) ¢can be written as

X =X + 2 for some zeP (0), and convessely, as shown in Figure
2., (Clearly, this is the geometric interpretation of (2.1) .

for a single equation in three unklowns with two vectors

-required to span P1(0).) If we now let alH = [311’312’313]’
so tha? (2.6)'éan_§§ written as ale = bl’ Theorem 2 implies

. 7

.

~21-
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Figure 2. P (b)), P (0), X, 2and .

that the solution of the form §‘= alH+b1 is the point on
P (b ) with minimal distance  froM the origin. Also, since
the vector X is perpendicular to the planes P (0) P (b ),
|1X}] is the distanceé between P (0) and P, (b; ) The repre-
sentation of any solution X as x =g,

b1 + a,z, corresponding
to"(2.1) in this case, is illustrat&d in Figure 3.

s

Figure 3.+ The representation x = a'H*b' + oz
-22-
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\ Let the plane of solutions of (2.8)\ be desjignated as Py(b,).

\ Then it f&ﬁlows»that either the planes Ea‘i ) and Pz(b ) coin-
, c¢ide, or they are parallel and distinct, or they intersect in
a straight 11ne In the first case, when P (b ) and P (b )

coincide, the equatlon in (2.8) is a mu1t1p1e of (2.p) and
any point satisfying one equation also satisfies the other.
On the other hand, when P (bl) and P (b ) are parallel and
distinct, there is no exact solutzou Flnally, when P (b )
and P (b ) intersect in a straight line £125 say, that is,

12 = P (bl)n P (b ), then any point on 212 satisfies both -
(2 6) and (2. 8). Observe, moreover, that with

the p01nt on 212 with minimal distance from the origin is
X = A b This last case is illustrated in Figure 4, where
is a "translation!" of the subspace N(A) of the form

Figure b. P (b)), P,(b,), ‘leland A*b,

-23-
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The exXtension to three or more equations is now obvious:
Given a third equation

(2.9) 831X * A3pXp * A33Xg < by
let P 3(bs) be the associated plane of solutions. Then assum-
1ng the planes P (b ) and P (b ) do not c01ngadg or¢are not% "
parallel and dlStlnCt, that 1s, they 1ntersect in the line 212
as shown:in Figure 4, the existence of‘a vector xH (xl,xz,x )
satisfying (2.6}, (2.8) and (2.9) is determlned by the condi-
tions that either P (b3) contalns thef line 212, or P (b3) and
12 are parallel and distinct, or PSTb ) and 212 intersect in
a single point. (The reader is urged*to construct figures to °
illustrate these cases. An 111ustfht10n of three different
planes containing the same line may also be found 1n Figure

'5.) For m > 4 equations, similar considerations as to the

ERI

N Aruitoxt provided by Eic:

intersections of planes Pk(bk) and lines £. ij = P, (b )I1P (b )
again hold, but diagrams become exceedingly d1ff1cu1t to

visualize.

For any system of equations Ax = b let y = AA+b that is,
y is the perpendlcdlar projection of b onto CS(A), the column
space of A. Then it follows from (2M) that Ax = y is
always a con51stent system of equations, and from Theorem 2
that A y = A (AA )b = A*b is the minimal norm solution. More—
over, we have fromeTheorem 3 that if Ax = b is 1ncon51stent -
then

112 ~ 2 2
[HAx-b 1% = [ly-b]| = | |AA"D-b]|

A minimal. Thus, the m1nima1 norm solution A+y of Ax = y
do0 minimizes ||y bll “

Consider an inconsistent system of, say, three equations

wo unknowns, Ax = b, and supposée rank (A) = 2. Let

AA'b have components Y11Y2:Y3s and let aIH,azH H de51g-
nate rows of A. Nou if P, (y ) is the plane of all solu iens
of a.Hx =Y i=1,2, 3 then sthe set of all solutions of
Ax = y is the line 212 = P (yl)n Pz(yz) as shown, in Flgure Sa,
A’y = A'H is the 'point on 212 of minimal norm and |]y- b||
minimal, |as shown in Figure 5b.

-24-
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Figure’'5. (a) Solutions of Ax = -y where y = FYACS

{b) The vectors b, y and E-AA")b.

1
4

To conclude this section we remark that since
b =AAD + (I-AAT)b -

is an orthogonal decomposition of any vector b with

HbH2 < f1aa"s] 12 + 1) (a-aatyp) 1,

thén the ratio

Y + . )
(2.10) ¢ = __lléﬂ_gltizi >0
HHI-aa")b] |

;
provides a measure of iﬁcoﬁ%istency’of the system Ax = b, 1In
particularJ ¢ ='0 implies b Esworthogonal to CS(A), whereds
large values of ¢ imply that b is nearly contained in CS(A),

" that is, ||(I-AA")b||2 is relatively small. (For statistical
applications [1) (4) [5), the values Hb||2,|IAA+'b||2 and
||(I-AA+)bI|Z are frequeqgtly referred to as TSS [Total sum of
squares], SSR [Sum of squares due to regression) and §§E [Sum
of squares dug to error], 4espective1y. Under,certa{n generalk
assumptions, pérticular multiples of ¢ can be shown to have
distributions which can be used in tests of significance,)

-25-
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Although the statistical theory of linear regression models
is not germane to the present considerations, formatiqn of ¢
in (2.10) can provide insight into the inconsistency of a
system of ‘equations Ax = b. (See Exercise 2.18.)

Exércises .
. 2.17 Use the techniques of solid-analytic geometry to prove that the
lines 212 = Pl(bl)an(bz), b, # 0 ahd by #£ 0 and 212 a P](O)ﬂ PZ(O)

are parallel. In addition, show by Similar methods that if

<

Pi(bi) = {x|ain =b,, aiH = (a ,a.z,a.3)}

. thep e

Wy 12 L 2
Ha;gb; |1° = min]|x]]

)fePi(bi). '

2.18 Given any points (xi,y ), i = 0'1 .+.yn, in the (x,y) plane with
Xgre 0y distinct, it s well known that there is a unique
:ntérpolatlng polynomial P (x) of degree < n};hat IS, P (x )=y
for ail i =0,...,n), and |f

4

‘ = o n ¥
Pn(x) Gg + X+ ..t x - ,
‘ L s
“theh Ggae-ey0, can be determined by solving the system of equa-
tions Ax = y where ke
F' n. - - - ~
. i X9 Xy ] % Yo
- n
1 X xlr Ka] Y .
. .
A= y O =' ° Yy ™ v
| n ° la
n " % n YnJ
L E ‘-.. L <
\ .
Now any matrix, A, with this form is called a Vandermonde matrix,
¢ and it_can be shown that '
det(A) = 1 (x x‘j N
A I<J

-26-
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*""2.4 Miscellaneous Exercises

% .
Thus, with XgareoaXy distinct, A is nonsingular, and if Ak denotes.,

the submatrix consisting of the first k columns of A, k = 1,2,...,n,

i
.

then Ak has full column rank for every k.

For k < n, the least squares polynomial approximation of
degree k to the points (xi Yi)’ i =0,...,n, is defined to be that
’
polynomial

k

Pk(x) = g0t QX . yx

I
which minimizes
o
2
LIy - R ()T
=0 -

. N

a. Show that the coefficients Bgseee sl of the least sqlares;
.l polynomial approxipation of degree k are elements of the
3. vector 0, where
% fa= Ak+l+y‘
-T2 + 2
b.  Show that with TSS = rzoyi , then SSR = IIAKHAkH vils. .

v

Given the data )

x;,‘-lIOI||2
T

construdt the best linear, quadratic and cubic least squares

approximations. What

For .each case determine SSR and SSE.

conclusions can you ,'draw from the data available?
v A

- /

,’/

—

z..ga Let A, Z; and Z, be any matrices.

A

v" //a?./' Prove that a solution, X, to the equations XAX = X, AX = Zl
/':,\//"’ and XA = ZZ’ if it exists, is unique.
¢ .
(] . . ..
'(" W{* For what choices of Zl and 2, is X a generalized inverse of A?
"" N

. »
'2.20 Verify the following steps in the origlnal Penrose proof of the
’ o
exlstence of X in (2.2):

-27-




a. . The equations of XAX = X and (AX)H = AX are equivalent to
the smgle equations XX A = X, Dually, AXA = A and
(XA) = XA are equivalent to the single equation XAA w af .

b. > If there exists a matrix B‘atlsfying BA ! = " , then —
X = 8" is a solutlon of the equatiogs Xx"A = X and xaa"

c. The matrices AHA, (AHA)Z, (AHA)3,..., are not all linearly ’

intddpendent, so that there exists scajarg dl""'d not all

k
. zero, for which

. ' dIAHA . dz(AHA)z PO dk(AHA) -=0. °

"(Note that if A has n columns, k < n’sl. Why?)

d. Let ds be the first nonzero scalar in the matrix polynomia)l

in 2.20c, and fet N
n . (o] y -
’ . 3 * . R //_‘
1 H Hobes-l, — =

B -,a-s{dsﬂl + ds+2A A+ ... +‘dk( A) ,/} ‘ i

A Y s :

Then 8(a"A)%*! = @)%,

e, The matrix B also satisfies BAHAAH - AH.
- kY

/
2.21 Les A and X be any matrices such that AXA = A, Show that if Ax = b ,
vis a conslstent system of equationsg then all solutions .can be

. written as =

x = Xb+ (I-XA)y ST .
. . .
where y is atbitrary. (Note, in particular, that this expression™

is equivalent to the form for x in (2.5) since columns of I- XA
, form a basis for N(A). Why?) :

2.22 (Continuation): Prove, moré generally, that AWC = .B is a consistent
system of equations if and only If aa'sc’c = B, in which case all
solutians can be written as /

¢ id

Kl - [-4
w=a'sct +v - Atavcct, . 5" '
where Y s arbitrary, . : '
. N -28- .
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3.1 Basit Properties of Af

The various properties of A* »dxscussed 1n this sectxon' ?:’!
are fundamental to the theory of Moore-Hénrose inverses. In
many c¢ases, proofs 51mp1y requxre vlrif catlon that the
defining equations in (2. 2? are satisfidd for A and some “ °
particular matrix X. Havmg illistrated Jthis proof technxque

in a number of cases, we whll leave the remaxnmg similar’
arguments as exercises. N ' .

LEMMA 5: Let A be any mbyn Watrix. Then’
(3) A mbyg implies A* n by m;

’

m)

(b) A -"omn implies A* = 0, 5

.
£

A = ps

AH+ - A+H -

= ('t . AH(AAH}
(APa)* = ptale,

\




»

(g) (aA)* = a*A* for any scalar a, where

=
E
7
"y
23

3
-

N 1/a, ifa ¥ 0,
a =4
0, if a = 0;
(h) 1f U and V are~unitarx,ma;gices,‘(UAV)* = VHA*UH;

: n
(i) If A= Z A; vwhere A, HAJ = 0 whenever i # j, A" I Ai*; o
i=]1 i=1

(j) If A is normal, A*A = AA"; .

(k) A, A*, A*A and AA* all have rank equal to trace (A*A).

Proof: Properties (a) and (b) have been noted previously in
Section 1.3 and Theorem 4, respectively. The relations in

(c) and (d) follow by observing that there is complete )
iduality in the roles of A and X in the defining equations.

To establlsh the first expre551on for Aﬁ,ln (e), let
X = (AHA) . Then XA = (A A) *AHA s Hermitian, and also
AX = A(AHA)*AH by use of (d). Moreover, XAX = X and N

AXA = A(AHA)*AHA = AH*AHA(AHA)SAHA = AH*AHA & A,

The second expression in (e) follows by g similar type of
argument, as do the expressions in (g) and (h).
To prove (£) we have AT* = A(A"A)* by (d)-and (e). Then

Atalt o aHaytaHaabnt = .
To prbve (i), observe first that AiHAj = 0 implies

AR = actactHa i, = o

j iMoot
and also AJ.*Ai = 0 since . i
+ -~ 4
H . '
AJ- Ai 0. . _ .

Now we can again show that A and A* satisfy the defining
equation.

That (J) holds follows by use of {e) to write

A = (Al tafA = (aafh)taat s Al AH L ahH ..

- .~30-




To show that A, A* , A* A and AAY all have the same rank,
we can apply the fact that the rank of a product of matrices
never exceeds the rank of any factor to the equat1ons
AA'A = A and A*AATT At Then rank (A) = trace (A*A) holds
since rank (E) = trace (E) for any idempotent matrix E [71. l

Observe in Lemma S(e) that these expressions for A' P
g_to the expressions in (2.3) whenever A has ful%’rb T
. l\column rank. Moreover bservé’¥E;; the rela-
holds for-<full rank factor1zat10ns
_ EG, by tTheorem 4, also~k HA where A is any matr1x,
by Lemma 5(f). The follow1ng example.shows, however, that
the relation (BA) = A's* need not hold for arbitrary matrices

»

A and B. s

1

0‘ s &

"B=[1 1-1—47

Example 3.1

]

.

0

o] = (BA)

since BA is Hermitian and idempotent. Also, we have
L

K}

- [ 2 -2 1 11 1 2 0:0
MR R YT . =1/2
« -2 3] o 1 1 201 1

- 2 -21 -
B* « BH‘tBBH)'l'= =172 {o 1,
' 0 'l

So that ,:
A" = [\1"1] PGV
. ‘1¢ 1
Let A be ;nylubyn matrix with columns al,...,an,'and
let Q designate the permutation matrix obtained by permuting
columns of I in any orgder {Jl,...,Jn}. Then

Ty
~ERIC 7 38
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In-a 51m11ar manner, if wlﬂ,,. de51gnate the rows of A,
and if P n; the permutation matr1x obtained by pe¥muting
rows of Im in any oyder {11,...,1m}, then '

- /
Wi H .
| - . .
PA = .
H ' )
. Wi .
- m -

Combining these observations it follows, therefore, that if’
A is any mby n matrix formed by permuting rows\of A or col-
umns of A or both rows and also columns of A 1n any manner,
then A =, PAQ for some permutation matrices P and Q. Moreove:,
since P and Q are unitary matrices, ) x

~+ QHA+PH, ) ﬁ:

by Lemma 5(h), and thus . -

= QA ?
In other wo*ds, A can ﬁe obtained by permuting rows and/or

. columms of Al :

Example 3.2

*Construct B+ if

»

-

.

Since B in this case can be written as. / -
S 0 0 1 .
) B PA 0 1 1o 0 1 0 .
. Q. 1 0j10 1 1 ’
’ 1 0 0 -
where A is the matrix in Example 2.1, then with P and Q ! .

Hermitian
] . -

13-
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R ‘ \
0 0 1 2 -11\ 1 1
. + H.+ . H 18 1 1
. B = QAP 'wi1s3l0 1 o [-1 2 = x| 2 -1{%
. . 1 0 5
- 1 0 0 1 1 -1 2
- @
* (It should be noted that B can be written alte;nately as
1 v
B-ag = 0! 1())0(1) -
TAY 1 <
o . . 11 0 o0

and so we have also B = QIHA*.) g - ‘
Further applications of full rapk factorizations and of

. C . +
permuted matrices PAQ in the computation of AY will be
illustrated in the exercises at the end of this section. We
turn now to a-somewhat different method for- computing A",

. o

i h This progedure essentlally provides a method for constructmg
o the Moore- Penrose inverse of any matrix with k columns, given
’ that the Moore-Pgnrose 1nverse of -the sub%trlx cons1st1ng of £- s
the first k-1 columns is known. - 7
For any k > 2, let A, denote the matrix with k columns,
o B3t aay. 3Then Ak can be wrltten in partitioned form as
Ak = [Ak_l,ak] Assuming Ak_1 is known, Ak can be formed'
using the formulas.in Theorem 6. ‘
THEOREM 6: For any matrix Ay = A 1,30, let
. o-a‘c‘ .
* - - o +
, Cx 7 (2 A Ay day
%, “}ff >
and’ let
= o H H +
Tk T fcAker Agep A .
¢ ; -
.\ Then )
% + + ‘ ,
: ,—* A1 'Ak-l,,akbk . : . .
(3.1) Ay = ,
by -
v * '
Where . .
» . ‘Jf‘“/
. Ck Iy if Ck f 0 . . , $/
b, = oo
k H H+ . - .
/ : (4 T2y ALy Ay s BE o 0 .
- -33- )
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Proof: Since ¢y is a column vector, the two cases ¢ 2.0
and Cy = 0 are exhaustive,.

P ‘Let X designate the right-hand side of (3.1). Then to
establish the represgntation for ﬁk+ requires only that ws
show the defining equations-in (2.2) are satisfied by Ak
and: X for the two forms of b N

Formlﬁg\zfi and XAk gives—» .

' (s.z) AX = A AT by, )
by definition of C» and _.{ .
+
D e e A AT Aoy g (Tbyay)
(3.3) XA, =
5 bkAk-l X bkak
Continuing, using-(3.2) gives
TIEO AKA - [Ak-l * cxbiAi1s A rAer Bt obiek).
and . 'vvwm h_/&/'. °
?\ A A, o *-A_*abocib |
3.5) XAX - KPkAk-18%-1 “Ak-1 2Pk Pk _
o +
PrAk-18k-1 * “kPkk ]
since Ak-i+gk = 0. o
@& . .
Suppose now tha % nd bk = Cp - Then e
+ +
A = A A oSk =

E

1n (i 2) is Hermitian, Also, w1th ck X 1, and- since
k fck = 0 implies ckHAk 1- ='0- so that Cx Ak 1™ Q and

;hus Cyx ak = 1, then

in (3% 3) is Hermitian. Moreover,

e

RIC .. - . o
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B * + - "_ .
AXAg = [Ak-l’Alg-lAk-l "’!k*ck] Pe-102] = A

" in«3.4), and ‘ i
. Al =B by P
XAkx = - = X ) - .
- v bk ‘
. in (3.5). Having shown that the defining equ;tions hold,’
" then X = Ak+ in (3.1) when ¢ # 0. g
-t y-1. H He, =+
Suppose S and bk_= (1+yk) ay Ak-l Ak-L . Then
PO
AX = A 1A ‘ ‘ : :

in (3.2) is Hermitian. In this case,,with

= 5 Hy —H+ +
Y T A% Apar Apg ay

a nonnegative real number and. ) T e

il*Yk)\lAk-

1- (1) 7!

. )

in (3.3) Hermitian. Furthermore, with bkA];_lAk_l+ = bk and,

since ¢y = 0 implies Ak-iAkjf+ak = 3,
N

= r
AXAL = A . .

4

in (3.4) and XAX = X in (3.5). Thus, wha c, = 0 it has been
shown again that Ak and X satisfy the defining equations for
" .the given form for bk’ I v

- ¥
N That the formulas in Theorem 6 can be used not only
directly to construct Ak*, assuming Akal# is known,-but also
recursivety to form A* for any matrﬁf A is easily seen: Let
A be any matrix with n columns ay,...5a,, and for k = 1,,.,,n,

-35-
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) let A, desxgnate the subuatnx consisting of the first k
columns of A. Now A a, * follows dxrectly from Lemma 5(b)-
. or (e), and if n > 2 Az ,...,An* = A" can be formed

sequentially using Theorem 6.

Example 3.3
Let

2
0
-1

0
-4].
-3

1
2
1

As

. ; )
Then with Al = ap,

[ . +

A - 1/s(2 o -1},

+
Al a, = 1/5

and ) Ti1 . I 2 3
. ‘e, = az-Al(Ai*az) = |2f - 1/5] o] = 1/5}10].
1 -1 6

b, = cz* = 1/29(3 10 6) .

and so N

. [Ustz 0 -11 - 1/145(3 10 6)
A, = ‘
2 1/29(3 10 6)
, . - .
§5 -10 -35 11 -2 -7
= 1/145 = 1/29 .
o bis, so 30 310 6 .
Continuing, !
. » 29 1 ’
A, a, =1/29 =
273 . |-58 -2 ~
and [ - Y
.. . = aS'AZ(A2+‘3) =a; -ag=0. ’
Thus, with y; = 5 and.
~-36:
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\

i ' .

H H+\+ + H, + .
. 83 A, Al 2 = (A ag)"A," = 172915 -22 -19), '
qe havé ,
by = 1/174(5 -22 -19)
l so that i T )
11 -2 -7] 5 -22 -19
- 1/29 - 1/174 .
‘ R 3 10 6 -10 44 38 -
3 - N
o o
. 1/174(5 -22 -19] y )
61 10 -23] - N
. = 1/174{28 16 - -2|, ' .
5 -22 -19

-

As will be 1nd1cated in Exerc1se 3.7, there is a converse !
of Theorem 6 which can be used to construct Ak 1 » giveh

{Ak 1,ak] Combining Theorem 6 and its converse thus provides N
a technique for constructing the Moore-Penrose inverse of h -
matrix, X, say, starting from any matrix, A, of the same 51ze ”
with A* known. (For practical purposes, however, X and A , ;
should differ in a small number of columns. '
Exercises )

- 13
3.1  Let A be any matrix with cotumns 35...,3 , and let A" have rows )
wln,... LA H Prove that if K denotes any subset of the lndlces '

. Tye00yn such that a = 0, then w‘H = 0 for all ieK, ¢ B

3.2 LetA be any mby n matrix wlth rank r, 0 < r < min{m,n). '

a. Prove that there exist permutation matrices, P and Q, such ©
that A = PAQ has the partitiomed form

- . ;. X h - . .
, Y 2

with W rby r and nonsingular. , :

b.  Show that Z = v 'x. ' : ;

c. Construct A+.

. -37-




3.3

3.4

O

[E

Aruitoxt provided by Eic:

RIC

(Y N
(Continuation): \ A matrix [U,V)] s calfed upper trapezéidal if U ,
is upper triangulyr and nonsingular; a matrix, B, is called lower
trapezoidal if BH I's upper trapezoidal.

»

Show that any matrix, A, in Exercise 3.2 has a full rank

a, -
]
factorization A = EG with E lower trapezoidal and G upper
trapezoidal. ({Such a factorization A = EG is called a
trapezoidal decompo'aition of A, )
b. Construct 4 trapezoidal decomposition of some matrix, i,
obtained from )
N 2 -l
A=l2 4 o 2.
3 1 '
Hint: Stact with
T N oM 2 -1 o
A=f2 * o] o * x «|,
* xf lo o0 =
where the ‘as‘terl_sk denotes elements yet to be determlned,/.//
and proceed to C0n§tl:uct a P and Q, If necessary, so that
the elements e,, and g,, of PE and GQ, respedtivély, are
-~ -
both nonzero. (Note that if this is not possible, the
factorization is complete.) Now compute .the remaining ele-
. ments in the second column of PE and the second row of GQ,
and continue. -
* e .
c. Compute at. .

Let A = [B,R] be any mbyn upper trapezoidal matrix with n >m+ 2
and let z be any nonnull vector in N{A). Show that Gaussian’
timination, together with a permutation matrix, Q, can be used to

reduce the matrix
A - »

2 H
] . .

to an upper trapezoidal matrix S, say. Prove now that If z, is

any vector such that Sz, = 0, then QHz eN(A) and (z ,QHz ) = 0.
2 that 3z, % AR
- Jq e ‘38‘ N ’ : ‘
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] ) e
3.5 Apply the procedure in fxo/rck(Lh to construct an orthonormal ! )
basls(/for. N(A) in Exercise 3.3. . B

-
3.6 Show that @&1% forms for [Ak-l'ak'r in Theorem 6 can be written

ina gle expression as / ! ,
A o H
: o e e ‘ .
(Ak_l.ak] =
- H
d
] where o ‘

H,  + .t -1 H H+ +
d. =c . + (1 < ck)(l+yk) WAL At

3.7 Let [Ak:l'ak]+ be partitioned as

e % \
(Ak_lnak) bd 1 , - .

a M ;

k

with dkH a row vector

a. Show that

Cetrg Ho =1 L H H
Gk_l[l+(l dk .ak) akdk 1, If dk a $1,

-+
. Ak-l = . )
~ ; Gk_l(I-dkdk ), If d a, = 1. .
b. Construct A+ if -
1 0 -1 0 )
A= 12 1 0o 2. ° .o° \ -
& - \
. P ’ 3 0 1 4 N
a( >

Hint: See Exercise 3.3c.

3.8 For any product A8 let B, = A*AB and A = AB'lalf. Then

? (a8)* = (A'Bl)+ = 8|+A|+. Why does thls expression reduce to
Theorem 4 when AB Is a full rank factorization?

*3.9 a. Use Exercise 1.3 to prove that If A Is any normal matrix,

’
At e Zl-lr xle - -
o . . - ‘ot

, -39- - S
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where 2' Inglcates that the sum is taken over indices |

with eiiﬁpvalues A 4o
Prove that if A is normal, (A")* = (A")" for all n > 1.

i1 f Ai = 2i-2, 1 =1,2,3, and

.

construct the Moore-Penrose ‘inverse of the hatrlx, A, for
which Ax, = Aixi, i=1,2,3.

3.2 Ap:&1cat1ons w1th Matrices of Sp§c1al Structure

For nmany app11cat1ons of mathem tics it is required to
solve systems of eqqgt1ons Ax = b in'Which A or b or both A
and b have some special structure resulting from the physical
considerations of the particular problem. In some cases this
special structure-is such that we can obtain information con-
cerning the se 6f all solutions. For example, the explicit
form for all solutions of the equations :

’ .
X; ¥ X\ < bi, i=1,...,n,

given in Exercise ¥.11, was obtained using the Moore-Penrose
inverse of the matnix [I,ul from'Exercise 2.10 where u is

the n-tuple with ea element equal to unity. In this section,
we introduce the condept of ‘the Kronecker product of matrices
which can bevused to -haracferize all solutions of certain
classes pf prgg;gms’th'f q;cur in the design of experiments
and in 11ﬁear programmihg.

DEFINITION 2: For any mbyn matrix, P, and sbyt
matrix, Q = (qk”l the Xronecker product of P and
Q is the ms by nt matrix, PXQ, of the form

PXQ = (a,P).

) . } ,
I I 474 -
ERIC . . - . '
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It should be noted in Definition 2 that if Pl- (p L)
and Q = (qkz), then P X Q is obtained by replacmgleach ele-
ment qka by the maerix qkzP whereas QX P is obtained by
replacing each element P; .« by the matrix:- IQ' Consequently
PXQ and QXP differ only in the order in which rows and
columns appear, and there exist permutation matrices R and S,
' say, such that QXP = R[PXQlS. (We remark also that some
authors, for eﬁample, Thrall nd\Tornhelm [13), define the
Kronecker product of P and Q alternately as PXQ = (p Q),
that is, our/Q XP. 1In view of the discussion in’ Sectlon 3.1
of the Moor/Penrose inverses of matrices A and A, where &
is obtamed’ by permuting rows of A, columns of A or both, =
each of the following results obtamed using the form for
PXQ in Definition 2 has a correshbonding dual if the alternate
definition is employed.)

Example 3.4 . S
If - N *
-~ L 1
, [1 °2 0° 4 -1
- P= o ’ Q = ’ ’
3° 0 -l2.oio3 )
\\ £ . —
\ 5 /
then \ .

o 0o 4 g -1 -2 ‘
0 0 12 . 0 -3 o
PXQs 2 . . ) > .

6 0 3i 0: 9 0]

and
f [0 4 -1 o 8 -2
- * 2 i 3 4 2i 6
. Qx P =
: 0 12 -3 0 0 0
6 33 9 o o of
. / r ~ MS
/ Given any Kronecker product P Xq, it follows ffo
t
/ Defmxtlon 2 that ‘

/ (3.6) Xt - (ElkPH) = PHXQH’.

Q P .41- } 48
ERIC - \. o

- T »
K

i




Also, for any matr1ces Rand S = "(skz) with the products PR
- - - and QS defmed the product [PXQ] [RXS) is defined, and we
have by use of block mu1t1p£}cat1on that .

a0~

an . . QP f'snR . - 51.R
“[PXQI[RXS) = . . /
Apy P . qmnPJ Sn1R Sni:RJ
R W
ngqlJ ji ngqlJ PRy -
' =
PR ...

Therefore, PN

(3.7) [PXQIIRXS] = PR‘XQS.

eqtiatmns in (2.2) are sat15f1ed
. i

LEMMA 7: For any matrices P and/Q; [P X'Q]"
-

Example 3.5 ¢

*’ /TCV + .o~ ',"»' -

construct A if

. 7 w20 1 4 0 2 3

L2 3 1 46 -2 -
] 6 -0 3 8 ‘0 4| ,
) 679 -3 81 -4 ‘
observe that A = P X Q, where 3 , .
‘ P\L[z. 0 '1] 0~ [1 z]- ﬂ .
2 3 -1 3 4y L

y -42-
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3.

c' . <

;l' . . .

eI -
- . . - . .

\" P o f
b", -22 4 b
="3’51- -9 15 ,
3 (17 -8
so that - .
4 3 .
. (88 16 -44 . -8 e ’
736 60 , 18 -30 ,
- + 1 |68 -32--34 16 ' .
= p X = . . LR, t
FoAe 12Z{.66 -12 22  4|* S
" . 27 -45 -9 T 15 < .o i
. | 51 24 17 % -g] ’ ‘
> . L -,
e e - A
Example 3.6 - o g ‘. '
To constrict 1‘\+ if . ‘ v e
1 100 1 01 0069 0 o] , N
1 01 010 01 0.0 0 0 SN
La=]1002 106 01 ¢ o
© 1’1000 1 00 0 1 ¢ 0 - "
1 0100 14 000 1 0 ' ‘ .
1 d 01016 00 0 0 1j R :

7
observe first that if ug dengtes the vector w1th a1’ 1

elements each equal to unlty, then A can be written in. . :
partitioned form as . . . o .
. u;, I, 4, 0 I 0 oo -
. 3 3 3 3 .
(3.8) A= . o . .
> - N * 7 ' -
uz I 0 Uz 0 1, L \
¢

~ Whereupon, the first two columns of A in (3.8) can be

written as the Kronecker product Lus‘;Isl.sX u,. Next observe .
that permuting columns, of A tg.form -

. i i TS e, © .
r~ |83 Iz ug “Ig 0% 0 . ]
A= LI - ' . . "
by I3 0RO Luy Igf ., L
. e s

the.‘last four. columns of Kﬂ become {u3,13] X 12. _'T‘l:rerefore -
~43. . R
' . /- - )
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~ . )
A can be written as > ' -

¢ [u 32 S]X[UZ’ 2]9 e

and thus

. .
+

- + + .
. (3.9) A = [u3,I3! X[uzalzl .

Permuting rows of JI,u]+ in Exercise 2.10 now gives

»

. . . qu
, i, 110 = 159 ’
) (1+1)I -ulul,:l
so that (S%g%%befomes X .
- - q;?H ] UZH .
(3.10) A=y | X e B 'Y
} ' - 4I3-u3u3 .i 312-u2u2

. .
Substituting numerical values into (3.10), a.suitable per-
mutation of rows of A" yields AT, ]

Matricggg A, as in Examp1e 3.6, with elements zero or
one occur frequently in the stat15t1ca1 design of experimefts,
and the technique of 1ntroduc1ng Kronecker products can often
be used o construct A" , and thus all solutions of systems of
equations Ax*=\b by use of Exerc1se 2.21. The additional
restrictions on‘;;\;\b obtaap solutions with particular
propertles can then be<§i;;;T5Yed\1n\£E£¢s of conditions on
N(A) or, equivalently, I- A*A. «(See Exercis .11,)

That Kronecker products can be combined wilth forms™ for
Moore-Penrose inverses of partitioned matrices/to construct

A* for. other classes of structured matrices—is—stownm by the

i representation in Theorem 8.

THEOREM 8: " Let W be any mbyn matrix, and for any positive
integer p let‘Gﬁ = (pIn+wHW)'l. Then

=

N
C Ly -4a-
. ~ ~

QO ‘ . . . «
IC - 5? ’ T -

>

Ay g M
a N
1

1}?} e , . i
S MK . . O
(s i, . . PR
»ni;%.q (PR . B - . - . wcr;}




- + -G + H
(3.11) WX [prup’w ’XIp .pr Xupup 1
P .

\Q”ogﬂf: Observe first that with
(pI +W W)(I -Whwy = p(I -WW) = (1 -W"W) (pT_ewh)

then

1(3.12) I_-W'W = pG_(I_-W'W) = p(I_-W'W)G

S(3:12) . Tp-WOW = pG, (1 -WIWY = p(1 WG,

Also, observe that with (pIn+wHW)w+ = pw* + WH, the relation
A

(3.13) W' = PG W’ cpw”,

together with the fact that G is Hermigian,'implisi\\\\
g wcw=-(ww %«r) ‘

’ is Hermitian.

Let
H
In X up .
A = s
WX1I v
XP

and let ‘ ' p
X a [cpxup,w*x I, - cpw*xupup“].
Then it follows from (3.12) and (3.7) that
XA = G, ‘x upupH . W wxx - cpw“wxupupH
= cp(ln-w*w) Xupup ‘W WXI

1 + 'H +
= (I _-W W 1
> I(J)Xupup +WwWX p

is Hermitian. Also, with upHup = p,
. -45-
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1 + H H H
- =(I_-WW W 1
pUa ™" W) Xpuy™ + WK Xu, p X4
AXA = » = A.
1 +, « H + ’ '
=W(I_-WW W W WXI
P (I, )Xupup + W )(Ip X P,
! Co
Continuing, we have _ "\_

1 M +
B - ‘- . =
XA(GpXup) p(In WW)GpoupHN WGpXup GpXup,

1 + 2+
Lo - wwyw
pUn = WWIN Kupu,

H

w - I
XA( XIp) + W WW XIp W.‘XIP,

and »

XA(Gpw* Xuju H

H 1 + + * + H
« Lo wtwyow WWG W X
) = pUIa W WIGN Xpupu TeW WO W™ Xupu,

p

+ H
= GW N
= GW X upup

lience, XAX = X. Finally, féming AX gives “

+ H + H M \
L - W
x PGy Kup™ - Gp¥" Xpu,
+ + . -H )
WG_- Ww - WGW
Y6 X Up X1y - WGGW" Xupuy .
Now ) ) . - -
+ H — H H 'H .
- W = W .
W Xu - 6w Xpu e ot xu Y,
by (3.13), which, with Gp and WGpw*’ Hermitian, implies o

ax)t = ax.

Having shbwn that A and X satisfy the equations in (2.2) s
then X = A* which establishes (3.11).

Example ‘3.7 )
If p = 3, then for any mbyn matrix, w,' T
A 3
HY' In In In
I, Xug - L. .-
. (W 0 o
- WX 13 0o W 0
f ~ 0 0 L]
o ' . -46- .
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o 3 )
I_Xu H . ’
SRS I ' w-cw' W

3 63 -Gy “G3W )(\
WXI3

. +

Gy -G4W T L AR MY
P Ve
where Gy = (3I+WHW)-1,

Suppose’ now that we let T'- T(p,W) denote the matrix in
Theorem '8 which is completely determine by p and the sub-\\\\;;\

matrix W, that is,
T = T(in) - . ) Y ’

,wxip

Now glven ‘a system of equations Tx = b with W mby n of rank
T, 0 <r <n, and p any positive 1mteger it follows that ‘if

)
¢

we partition x and b as e ”
<L) p )
x = |, y b =], ~| ¥ .
; g ' -
<57 4 (P

’ with x(lz...,x(p) and b(o)n-tuples and b(l),...,b(p) m-tuples,
then x is a solution if and only if

. . ~ » v
P .. -
a3 . (@) .-
and .

z .

Vsas) w3 ey ey L .

; \

) other words, each x(J) must be a solution of m equations:
- n unknowns, subject to the conditxon that the sum of the

solutions is equal to b(o). Thase charactérizations are
-47- : B
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-further explored for the general case of an arbitrary matrix,
W, in.Exercises 3.16 and 3.17 and for an important special
case 1’n Exercises 3.18 and 3.19.

Exercises
3.10 Complete the numerical éonstruction of i\+ in Example 3.6 and
© verify that A and A" satisfy the defining equations in (2.2).

3.11  Matrices of_ the form .[up,fp] and, more generally, Kronecker
& products such §s A in Example 3.6 in which at least one of the

m?trices has this form occur frequently in statistical design of
experiments [1][4]. For example, suppose it is required ta
examine the effect of p differght fertilizers on soy bean yield.‘
One appro:aﬁh to this problepris to divide a field into pq‘subsec;
tions {catted-plots), randomly assign each of thé p type of
fertilizers to q plots, and measure the yield from.each. Neglect-~-
ing other factors which may effect )figld, a model for this

experiment has the form .

, 0 (3.16) « YijEmar teg ’

where v, i is the yield of the jth plot to which fertilizer i has
. been applied, m is an estimate of an overall “main' effect, t; is,
an estimate of the effect of- the. partlcular fertilizer treatment‘.
R and e‘J is the experlmental error associated with the particular

—=——— - --plot. - The question now xs to determine‘m and t,,...,t_ to mini-
! P

mize the sym of squares of experimental error, that is,

fiez

.o pa] jap '

e
-y =
<

a. |If y-fr’\d e denote the vectors . : J
' A
Y (Y'I"ﬂ"ypl :let---:ypzw-':Y|q;---yypq) -
. and- : )
4"'*: - . ' . H
# e (e”,...,epl,elz,...,e .ie )

p2"""elq"' pq’

show that data for the model in (3.16) can be represented as

(3.17) y = Ax + e,

N where x“- }(m,t' ,:..,tp)H and A= [up,lp] Xuq. : .
' \‘1 . 5 -48- 0
s : 5 o X )
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b.

* 4 » 3 . . .
c. « For statistical applications it is qlso assumed that

3.12

.

A

£y

O

Show that r(A) ='p,
2= Ay, o (3.17).

p

Tt =o0.

Starting with X from }\u:,abgu

say, for which this additional condition holds.

(Continuation):

Exercise 3.11, it is sometimes assumed that there is another

effect, called a block effect, present.

models is assumed:

[
’

treatment and block effect. then

(3.18)

Yij =m 4+ ti + bj +~e'j'

1n this case one of two

and, construct the minimal norm solution

, construct that solution X,

Given the experiimental situation described in

Flrst, |f there is no interaction between the

whereas If there is an assumed interaction between the treatmen§

and block effect, then.

(3.19) Yij

where Yijem and t; have the*3ame meaging as in (3.16),

J..J-I,....q. deslgnate block effects, and (tb).., =]

=m+ ti

+ b. + (tb)..
i ()lJ

+e..
eu.

j=1,...,q, designate the effect of the |nteractlon between treat-

ment i and block j.

a.

ERIC
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Using the notation for y and e from Exercise 3.11, show that

the data for the model in (3.!%) can be represented as

y=Ax+e,

where now x = (m, tl....,t b

T

as

y = Azx + b

where

x-(m,“,..4

,t

t

A= [[“p X! X"q'"pxlq]’

. ’how tha't the data for the model in _(3.'19) can be represented -

-49-

’ . . ) H
.bl,...,bq,(tb)'],...,(tb)thA..,iiﬁgpl,,.l,(:f)pq)

56



and AZ = [[up,lp-] Xu ,upXIq,I X1 ]
’ .
c. Use the procedure of Example 3.6 to construct A2 and thus
the Solution X = A2 y. (For statistical applications the
model in (3.19) is not meaningful unless there is more than
' one observation for each pair of indices i and j, that is,Ka

model of the form

*¥3.13

3.14

v 3.15

'3.16

O

.

RIC

. . ' L
”’y‘jk‘mfti +bj +(_tb)ij +eijk i
where k = T,1..,r. In this case the unique solution is obtained
by assuming -~
X
P
« lt;= )b =D and also (:b)U (tb).. -
N H S B B - ;..|A j=l [POREERRE -
-~ o .
"for all i and j. Note, in ;ddition, that the construction of
‘A|+ in 3.12a above is somewhat more complicated, but can be
formed usingerelated tel hniques. The particular solution used
for statistical applications in this case assumes that
P ) « -
Ly, =7)b =0) ’ .
MR =4 j=1 4 .
Show that if P and Qoare any square matrices with x an eigenvector
of P corresponding to eigenvalue X and Yy an eigenvector of Q cor-
respondung tofigenvalue u, then xXy is an eigenvector of PXQ .
correspondn to eigenvalue Ap. -
a. Show that for ahy p and W, I-T*T = (I -w*w) X -uut,
n P P
*b. Construct a complete orthonormal set of eigenvecgrs for I-T‘T.
Prove directly that for any mbyn matrix W of rank r,and any p,
rank®™(T)*= n + r(p-1). . .o
\\ e Ce
For any system of equations Tx = b with x and b partitioned to
give (3.14) and (3.15), let X and B denote the matrices T .
1 . ; e
X = [x(l_g’ (p)] y ) “,b(p)]'
a. Prove that,Tx =b if and only If there exists a matrix X such
that . ] . . ’ ,
. -\
*-50- . ’ .
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(3.20)  xu, = plo)

v -
and -

(3.21)  wx =8,

. i -
b. Prove that a necessary condition for a solution, X, to (3.20)
and 13.21) to exist is ww'B = 8 and.ub(o)‘= Bup. . -

14

*3.17 (Continuation): For any eigenvector 2 XyJ." of Inp-ﬁ, where
Yj has components le""'yjp".let Zij denote the matrix

~

lJ [YJI l' "'Yjpz.l]'

Show that z; ij corresponds to eigenvalue }‘in = | if and oRly if

(3.22) 2 Y5 0 ’ o
i .
J , ;
and ' . . ‘

(3.23) vz = o. ) L

3.18 The trans:portation problem in linear programming is an Zxample of
’ a problem in which It is requlred to solve a system of equatloas .
Tx = h. This famous problem can be stated as follows: Consider
a company with n plants which prodice LIEERERLI units, respectively,
‘ of a glven product in some time period. This company has p
. dlstrlbutors which requlre b‘,... bp units, respecti\.rely, of the

product in the same tlme period, where

. 5

- I-I j-lb g
'If there is a unit cost cij for shipping from plant | to distributor

J» I-I vea,yh and i=l,...,p, then how should the shlpments be allo~
cated in order to minimize fotal transportatlon cost? This problem

can be Illustrated in a schematic form (called a tableau) as shown

in Figure 6 where 0|,.. ,On designate origins of shipment (plants),
= - DI""
J» 'xij denotes the number of units tPVbe shipped from 0' to Dj'

* ~
e .

The problem now is to determine the xlj' i=l,...,n and j=1,...,p

,Dp desﬁlgnate destinations (distributors) and for each i and *

to minimize the total shipping cost.
' -51-
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|

\
H ~
- \ :
D D, D \
1 J P
‘1 ©j “ip
0 a,
1 1
X‘l x‘j cee X‘p
T En ©i3 “Ip .
0 a,
i x i
. N 1] *ip :
— - s
c c . c
. nl nj np
% 3%
anl « e er‘j « e s an
- bs .. b. b =Jb
] J . P ?al E J
-

Fi‘gure 6. The transportation problem tableau. . \
(3.24) E )
121 J-l ity ,
subject to the condltl'oni that
] ' *
(3.25) Ex”-ai. I =1,...,n,
j=
and ’ ‘
n ° -
.26 - b S I IR . .
(3 ) iglxij j, j » »P .
. -
Also, we must have xU >0, for all i and j, and, assuming frat-
tional units cannot be manufactured or shipped, all a, bj and Xij
-52- : '
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-:Intégers. (This last requlrement that the x,; are integers
fol lows automatically when the a and’ bj are [6] )

a. Show that if the x in Figure 6 are eiements of an nby p
matrix X, and i f hz°)- (a3y5- ,a, ] » then the conditions Jn
(3.25) can be written as Xu =b o)and the conditions in (3 26)

become
E - X

; unX-[bl,...,bp]. :

L]

Therefore, (3.25) and (3.26) together imply that any set of

numbers xU which satisfy the row and column requirements of

the: tabieau is a solut!on of Tx = b where T = ]'(p,u A) and “
L b-[a ‘.,a,bl, ,b]

Vo, Prove that IfT = T(p,un ), then

1 I - H
T’ - [[In ';Tp unun ] Xu My X[ —n+p upl.lp
Moreover, show that lf:::i is the element in row i and colum/n
Jj of the tableau form of % = T+b, then
i ’ L ‘ ~~—
X, = ~a, + —b,.~ — Z a.
ij .pci nJ:nPi,ll

fc}\l.._r l,...,n and j=1,...,p.

*c ’Shéw that rank (T) = n+p=-1 when V‘- unH, and thus rank
- ﬁ) = (n=1)(p-1). Also, construct a complete otrho-
normal set of eigenvectors of I p'- ﬁ, and show that z,

IS»an algeovector corresponding to eigenvalue A. Y= 1 |f and °
only 1f all row sums and column sums in the tableau fopm are
zero. ... o ) : s T

d. Thejv_e‘ctor g (I-np - T‘T)c is ;:alled the gradient of the

inner product .
(c’x) - X E . / ) .
=1 Je 'j ij .

in (3. 210), Show that the elements, 9 in the tableay Sorm

<

for g can be written as

-53-
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fori=1,...,n and j=1,...,p. < \

3.19 (Continuation); The transportation problem has been g%:era]ized

in a number of different ways, and one of these exterdsions follows

kth

problem is now obtained by adding the conditions that

tableau, k=1,...,q. A "three-dimensional'' transportation

“g . v

{2 A7) 3 e o e U S5O

\PAX YR IR TH [} )
Kkml ijk ij

for i=1,...,n and j=1,...,p, where dll""’dnp are gi;en posiitive
integers. (The thoice of nomenclature “three-dimensional is
appa(spt by noting thai if the table;us are stacked to form a
parallelopiped with g layers each with np cells, then (3.27)
simply implfe& np conditions that must be satisfied when the ijk
, are summed in the vertical direction as shown in Figure 7, whefe

only the row, column and vertical sum requirements are indicated.)
A}

a. Show that the conditions .
y -
n ;
Z a ™ E bjk’\ k=1,...,q,

P e w0 j=1 L
’ ) ' . kg‘aik.- jgld‘j,’i-ll...,n, ‘ R
v n
“ kglbjk = ;E;d'j' =, p, )
‘Y ﬁﬁ* are necessary in order for a Ehree-digensional transport;tion

problems to have a solution.

b. Show that the conditions which the xfjk must satjsfy if there
is-a solution can be written as [x = b where T = T(q,W) with

/
. -54-
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{bQ/o%</-'/>\Q /
| [T A
’ ) = - — - . / 24
38/ /3 >R / /
: b - LA
. : il B G P // N’/,'/
..-/./,b\\
b b T ""‘*/.' N 43
1k ik pk // ,bj
- . . T
P y/
7 N *
' L ¢ 2¢Q
\ bll bjl .. bpl
Figure 7. “The parallelopiped requirements for the
tableau of a threé-dimensional transportation problem.
W Thp - T’(p,vunH) the matrix for the "two-dimensional trams-
portation problem in Exerclse 3.18 and a suita
! c. Show that _
" . . -1 L
G J
q " [qxnp Tnp"Tnp]
’ . .
o - h 1 W
s N - e J/)(
. = [q p ~ pHa Uty 4AI

+
and that Ganp = {U,V) where

»
et _{{ __2ngop+ H
v '-’nznﬂﬂ[lp {p+a) (n¥p+q) YoY% Jx"n
. + -55.
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o~

o

and
v=yu X 1_l; - _(__’_(u)_n ¥ 2p + uu M
[ nzp+qs n n+p) (n+p+q) n'n §°
e " -
3.3 Miscellaneoug Exercises -
L}
3.20 Prove that a necessary and sufficient condition that the‘equatiqns,
AX=C, XB = D hyve a common solution is that each equation has .a
e solution ar;d that| AD = CB, in which case X = A+C + DB" - A"ADB+ is
¢ a particular solution.
3.21 Prove Lemma 7.
.3.22 Prove that -
— {I + M - 8*) -
L

" ERIC
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- .

for any matrix B, and that

[1‘+ s“s]" + [I s"s""]" =21 - ts"tst
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.
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. .
LR

4.1 The Drazin Imvérse of a Square Matrix
e .

‘In this sec;\J'\on' we_consider anothér type of.generalized

H]
T inverse for square complex matrices. 1The inverse in Thetrenm
3
9, due to Drazm {3}, has gdvariety of\applxcatlons. .
. . 7
THEOREM 9:. For any square Jmatrix, A, there is a uhique .
matrix X such that ’ "’ . ) o »
64'.1) Ak = Ak’lx, for some positive integer \k,‘ ot
e ww e L4 Y '
;"“ (4.3) AX =}ﬂ. T . . . v
i Proof: Obsefve Qrst that 1f A =0 1is the null matr1x, then
< Aand X=0° satrsfy (4.1), (4.2) amd (4.3).°

Suppose A §. 0 is any nbyn matnx. Then there exist
v scalars 41,...,d . 'not a11 zero, such that

) £ - . ; - ’ .
.2 lkl 0 ¢ LN = . . '_“
L i=1 - - Y .
% - ‘e . e -57- ‘) 7
< e .- 64 L -
R . - ) . .
. A ‘ He




4 B

where t < n2+1 since the A can be viewed as vectors with n
elements. Let dk be the first nonze‘ro coefflc.lent Then we

2

-

can write .
(4.4) Ak = Ak*t1y, -
where . Nt
: . t i
1 i-k-1
U= - I d.A
3;[ =k+1 it ]

~

Since U is a'polynomial in A, U anJ A commute. Also, multi-
"plying both sides of (4.4) by AU gives
Ak o ake2y2 | ake33 )
i
and .thus

¢ ey

©

k _ Ak+m m

(4.5) . A U

;?or allm > 1.

Let X, = AkUk*l. Then for, tltis choice of X,
) Aty o aZke1kel Ak
- and ‘
. x2A - AkUk+lAkUk+1A (A2k+1Uk+1)Uk+1 - k*l/:>)hf

by use of (4.5). Also, X and A commute sinte U afd A commite.

Thus the’gonditions (4.1), (4.2) and (4:3) hold for this X.

To show that x is jpique, suppose that Y is also a
‘'solution to (4. 1), (4.2) and (4.%), where X corresponds to
an eprnent k and Y corresponds to an exponent k, in (4.1).
Let k = maxlmum (kl’kz) -Then it follows using (4.1),‘(? 2):
, (4.3) and (4 5) ‘that i ’

3 .

. 3 2

« X = x%4 = x3a% = ... = xk*1pk o xk+lpkel
N ~d ~

Y
= YAY = ... = xaKtIyKtl o pky

Ta .. = AYE = YA -y -,

to establish uniqueness. [}

) . © -58- R . .
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We will call the unique matrix X in Theorem 9 the Drazin
inverse of A and ert% X alternately as X = Ad Also, we
will call the smallest k such that (4 1) holds the index of
A. ¢

.

Y

That Aq is a generalized inverse of A is apparent by
noting that (4.1) holds with k = 1 when X = A"l exists and
also (4.2) and (4.3) hold. Observe, moreove¥i that in
general (4.1) can be rewritten as
(4.6) Akxa = Ak

b

and (4.2) becomes XAX = X, by use of (4.3), so that the‘
defining equations in Theorem 9 can be viewed as an alterna-
tivé to those used for A* in which AXA = A is replaced by
(4.6), (1.2) remains unchanged, and (1.3) and (1.4) are
replaced by the condition in (4.3) thatéA and X commute.
(Various relationships between Ay and AY will be explored
in the exercises at the end of this section and in Section
4.3.) - ' L
. As will be discussed following the proof of Lemma 10,
full rank factorizations of A can be used effectlvely in
the construction of Ad : .

. ¢ "2 -
LEMMA 10: For any factorlzatlon A = BC, Aq = B(CB)d C.
Proof: Observe f1rst that for any square matrix A and posi-
tive 1ntegers k, ‘m and n, we have Ay TAD - Adm n

if m > n and
men, .
A d = A" ifm > k and A has index k. R

Let k denote the larger of the in&ex of BC and the
index of CB. Then . . a

(B0 g = (80)** 1 (8C) M2 = B(cB)¥c(ne) X2
’

. B(ca)dk*z(cn)zf*?c(BC)dk+2

-

-

+= B(cB) **2c ey K+ 2 (c) K*2 = B(en) K Zcpe)

-

.

= B(cB) K2 (cBykc - B(CB)dZC. B

“m -59-
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Suppose now that A = B, C, is a full rank factoriza%ion
where rank (A) = r. Forming the T byr1 matrix Clalh then

either ClB1 is nonsjngular, or C;B,.= 0, or rank (ClBl) =T,
where 0 < ry, <rg. In the first case, with ClB1 nonsingular,

(Clal)d’= (clal)'l so that Ad" Bl(clﬁl)’zcl, by Lemma 10,

where
(C{Bl)'z - [(Clalf-l]z'.A {//*\~

On the other hand, if clal = 0 then (Clal)d = 0 and ?hus‘
Ay = 0 by again using Lemma 10. Finally, &f rank (CIBI)

= r2,0 <T, <1y, then for any full rank factorizati
CIB1 = BZCZ’ we have

2
€C1B1)g = Ba(CBy04 €,

_ . 3 i S
So that Ad in Lemma 10_becomes Ad ‘BIBZ(CZQZ)d C2C1° The
same argument now applies to CZBZ, that is, either CZBZ is

R .

"

nonsingular and s
3 - )
(CpBy)g° = (3073,

or C;B, =0 and thus Ag = 0,‘or rank (ClBl) =;r3 where
0 <1y <1y, and C,B, = B3Cq is‘a full rank factorization to
whijch'Lemma 10 can be applied. Continuing in this manner
with * )
’ - 4
rank (Bici) > rank (CiBi) = rank (Bi+1ci+1)? i=1,2,...,
.-

hen either BmCm = 0 for some index m, and so Ag = 0, or f -

¢ rank (8,C;) = rank (C,B ) > 0 for some index m, in which c3se

»

-2
(Bmcm)d = Bm(cmam) Cm

and thus

- -m-1
4.7) Ag = BBy, ... B (C B) CCp-1 -+ C

| 1

in Lemma 10. Observe, moreover, that with A = ilcl,

2 = = m = ’
A B,C;8,C, alkzczcl,..., A BB, ... B CC cee €

and ¥/y
‘ _ -60- ) \ 1
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m+1 -
(4.8).- A = BlBZ N Bm(CmBm)CmCm_1 e C1 .

m _ Am+1

we have either A = 0, and Ad'- 0, or that Ad has th;

form in (4.7) where, since each Bi has full column rank and

each Ci has full row rank, [ !
L & 2
+ + + +

By .-. By Am?i oo Cuy =BGy

and . - ) - -
2 ’ . ..
+ + m+l. + + . .
Bm ...‘B1 A C1 e Fm = CmBm. .

Therefore, in both cases we have rank (A ) = rank (Am+1)

re, it follows in both cases that'(4 1) holds for- —S¢-——]
k = m afd does not hold for any k < m. That is to say; ki
(4.1) is the smallest positive 1nteger Such that AKX ana AK*1
have the safie rank. ) i

Example 4.1

JRrp——i

N < h
If A is the singular matrix T
[5 4 0] ‘
! A=13 s -3 ,
ls 3 -1 ‘
written as the full rank factq;izaiion - B
LT e B W 2 -2 : ’
A=BC | 1l 1 ) -t
1
then i
2 0 ’
C.B, = . .
1"t 1 8 :

is nonsingular, so that A has index one, and -
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C,B, = BsCy = 0][1 0] -

AN

is a full rqpk factorization with
index three and Ad'becomes

) -62-

ic - -89

6 .26 30
A, = B (CiB)%C, & i3 35 -33 <:i '
*d 17151 1 63
- 3 3 -1
Example 4.2 -
If A is the matrix
7 0 0 0
0 0 1 2 C —7
A=
- {0 0 0" 3
4 ~ 10 0 0 0
3 _73
with A = B;C; the full rank factorizatios,
[7 0 0] .
- 1 0 0 0
) B,C, = o 2
A = 1C1 = 1 1 0 1
0 -1 1] ~
L 0 OJ
where .
o ) v d
. 740 o0 §
c,By =10 1 1}, .
\ 0 -1 -1]
then rank (CjBy) = 2 and AR
7 0 1 0 4 0 .
CiBy = ByCy = [0 1f1 L1 - X
s 10 -1 - . -
is arfull rank factorization. Contin;zing, .
A T
. ) - -
oL i 7/ 401 v » 0
’ CZBZ * % 0 X ~
. LY 5;
so that i '
* — .
//

C333 =7,




E

e

: -4
. Bgq =-ByByB3(CsB5) "C4C,C,

. 1q,
343 7 -0 0 0
1 |0 0 0 0 o
. = 1 0 »0 0] s
. mor| o (0 ¢ T=lo=0 o o
0 ) 0 0 0 0

. 6
4

For the spec1al case of matrlces with index one we have.

(4.9) AAdA:= A, AdAAd = Ad, 1‘\Ad = AdA,
so that " : . — ‘
. . - v
. 3
(4.10) (Ad)d = A <

-~

by the duallty in the roles of, A and Ad Conversely, if .
(4.10) holds, then,the first and last relations in-(4.9)

follow from the defining relations in (4.2) and (4.3) applied-
to (Ad)d and Ad, and the second relation in (4.9) is simply .
(4.2) for A4 and A. Consequeqtly, (4.10) holds if and oqu

if A has index one. In this special case the Drazin inverse .
of A is frequently cailed the group inverse of A, and is_
designateé alternately as A¥. Thus X = A¥, when 1t exists,

is the unique solutiqn of AXA = A, XAX = A and AX = XA, ahd

it follows from Lemma 10 that for any. full rank factorlzatlon .
A ~sC, A* = BcB)-2¢c. . -

Exercises » '
4.1 Compute Ay for the matrices . * .
I 1 2 -1
. 7 8 5 [+ 3 1o 1.0
A' = 4 5 3], Ay =10 0 -1, A3 ol I 1o i
5 . 7 4 0 0 2 2.3 0

4.2 Given'anr matrices B and‘t of the same size where B has full
column rank, we will say that C'is alias to B if B = (CHB)'.'CH

a., Prove that if C is alfas to B, then CHB is nonsingular.

b. wm Show that the set of all matrices alias to ® fotm an \\‘

" equivalence class, .
.

N -
. -63- .
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c. Prove :hat Ad
ful' rank factorization A = BC
d. Note, in particular, that Ad - A when A is Hermitian.

tif and only if Cis alias to B for any

Prove this fact dlrectly and also by using the result in

4.2c above. .-
4.3 Prove that (A )d d and that [(Ad)d]d - Ad for any matrix A,
4.4 Prove that Ad = 0 for any nilpotent matrix A, g
19;5 Prove that [P XQ] = p XQd for any square matruces P and Q what
is the index of‘PXQ? " .
. 4.2 An Extension to Rectangular Matrices ;
< [
. The Drazin inverse of a matrix, A, as defined in
Theorem 9, exists only if A is square, and an obvious question

is how this definitidn can be extended to- rectangular matrlces
One app oach to this problem 1s to observe that if B is a
nlbyn h m > mn, say, then B can be augmented by m-n columns
of zeroes to form a square matrix A, Now forming Ad, we
might then take those columns of A4 which correspond to the
locations of columns of B in A as a definition of the "Drazin
inverse" of B. As shown in the foIlow1ng~examp1e, however,
the d1ff1cu1ty in this approach is that there are

matrices A,

such
obtained by considering all possible ‘™M
arrangements of the n columns of B (taken without any permuta-

tlons) and the m-n ;olumns of zeroes, and that Ad can be

.

different in each case.

Example 4.3 o .
If . .
[r 2 » / . , '
B =10 1! and '
3 1} -
) 1 2 1 0 ‘? 1 2 0
Al =10 0 1y, A2 = (0 0 1y, A3 = |0 1 of,
0 3 -1 3 0 -1 -1 0
. S
. -64-
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then ) ’

LN

0 10 7 1 2 .
.1 1 ey L1 .

g =50 3 3y g=+o o 1], ‘

I 9 o0 3000 -1 s .

- - ‘: -

1 -2
Ag= Jo 1 o -

13 3 o_' ;oo s

are obtained hy applylng Lemma 10 to the matrices A, = BCi
: Where . $ RN &

7 b,
0o 1 o] . 1 0 o0 .1 0-o0
c, = o, e, = , Cq = )
oo o7 1 2 lo o 1 350 1 o

Observe in Example 4.3 that the nonzero columns of each
matrix (A;)y correspond to the product B(C. B)d . Conse-
quentdy, using the nonzero columns of (A. )d to define the
"Drazin inverse" of B implies that the resulting matrix is a
function of C1 That such matrices are uniquely determined
by a. set of defining equations and are special cases of a
class of ggneralizedc§2;:;:fs that can be constructed for-

«pb

any matrix B will be apparent from Theorem 11. .

: i B e

\
« ¢ THEOREM 11: For any mby h matrix B and any nbym matrix W,
there is a un1que matrix X such that
(4.11)" (BW) = (BW) xw for some positive 1nteger\k . y
. - ¥ N

(4.12) XWBWX =-X, N,
(4.13) BWX = XWB.
Proof Let X = B(WB)d . Then with XW =.B(WB)d (pW)d,

by Lemma 10, (4.11) holds with k- the index of BW. Also,

XWBWX = B(WB) ,WBWB(WB) ;. = B(WB) 4

ERIC
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To- show that X is. Unlque we can proceed as m the proof
of Theoren 9. Thus, suppose X and X, are solutlons of
(4.11), {4.12) and (4.13) correspondmg to positive integers
k and kz, respectively, in (4.11). Then with ‘
k = maximum (| 1,k ), it follows that

. )(l

. 2 2
X HBHX, = BWX WX =.(BK) (X W)X,
ik Ky . k+1: k :
R U OB Sl S GO L ST AL
. L Ry ok
W (X, W) x = XZWﬂYiBW) x;W*x

.

[WB)k”

L]
~
™~

o

~ X, BWXl. \

!

fontinuing i

a similar manner with \

k+1

‘ k+1
Zy(wxz) (WB), Wwal

’

-

he ch01ce of nomenclature W- wez.’ghted Drazin mverse of
asily seen by noting that with (Bw)d = B(WB)d , then

! -66-
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(Bw)d = Bd when B is square and W s the iden ty matrix.
o’ Also, observe more generally that with B and (By)4q of the
. same size and with W and the size of BH
BW(BW)d = (Bw) WBA (4.13) can be viewed as a generalized
commutativity condition, and (Bw)dWBw(Bw)d = (Bw)d in (4.12)
i analogous to (4.2) when written in ,the form XAX = X.

Example 4.4°
If ) ' '

» the relatiogn

.

’

is the matrix in Example 4.3, and
1 2, 4 o3 11 ) ’
W, = W, = R )
Vol oar 2)” 2 e 0 o)
thén )
.o 169 338] , 1.1
. ,, C1 s
\ (By )g = ———7| 60 169|, (B, ;= ;50 0
L0 0O g7 169, 2 3003
Exercises .
b.6 Verify tha B and (B )d satisfy the defining equations in Theorem
Il for W = Ci, , C3 in Example 4.3 and for W = w]‘ Vz in
Example 4. N \
4.7 Prowe that E = E% for any idempotent matrix £, and thus that
- (Bw)&a- BzBd when\ths square and W = By- (Consequently,
(Bw)d = B when W = and B has index one.) 4
. 4.8  Show that if W' is any\matrix alias to B, then (Bw)d = V+(VB)-'.
s
4.9 Prove that (Bw) = BH+B+BH+ for .any matrix B whén W = st (Note
that this result follows at once from Lemma 5(f) and Exercise
4.8 if B has full column rank, whereas Lemma 5(f) and Exercise
h.2d can be used for the general case.) N
, .
-67-
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4.3 Expressions Relating A, and A' :

It is an immediate consequence of Exercise 4.9 that if
w = B and so ,
H++H+ ©

(Bw)d = B BB
then \

¢ BT = WYL : !

Thus, u51ng’W’we1ghted Drazin inverses with W = B ,(Bw)d and

B* are related directly in terms of products of matrices

which implies that (Bw)d and B* have the %ame rank.L’In con-

trast, for any square matrix,. A, we have .

{
rank (A;) = rank (A¥ ) = rank (ak+ly

. ;
with k the index of A, whereas rank (A ) = rank (A) There-
fore, rank (A4). < rank (A5 Wlth equality holdlng if and
only if A has a greup inverse. The following result can be
used to give a general expression for the Drazin inverse of
a matrix, A, in terms of powers of A and a Mdore-Penrose
inverse. .

«
. —

THEOREM 12: For any square matrix A with index k, LIS
(4.14) Ay = AFvAK ‘ o

for any matrix Y such that

(4.15)  AMkrIppZkel,_ 42kel

Proof: Starting with the right-hafd side of" (4.14) we have

//"""—‘ . .
Akyak = Adk+1A2k+1YAZk+1Aak+1~\;
Ad1<+1A21<+1Adk+1 - d2k+2 2k41 = Ay '

Obsevve® in (4.15) that oﬂ% obvious choice of Y is &

t \

;AZk*l) , and it then follows that A%, (A%)* n\\Ad have the
same rank for every positive integer £ >k. In tﬁls case,

[3
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various Pelationships among A* ,(A £3* and A4 can be
- established. For example, it can be. shown that for any 2 > k,
there is a unique matrix X ‘tisfying

(4.16)  a*xad = A%, xafx = x

S

and

(4.17)  xahf 2 xat, A% - AA,.

Ddally, there is a unique matrix X.satisfying (4.16) and

4.18) (' = Ak, xat = .

- The"tnique solutions of (4. is) and (4.17) and of (4.16) and
(4.18) are called the lefs and right power znverses of A%
respectwely, an Te desrgna’ted as (A )L and (A )d{ More-

over,.lt can bé shown (Exercise 4.11) that -

(3 -

(419)7 Y - NUONE AdA(A“)*

and- (Exercide 4.14) that (AR)L and (Az)R‘can be computed
’ using full rank factorizations.

»
’

N EN ‘ .
“Exercisas

4210 Show ‘that 1f A and ¥ sausfy A“VA - A and (WY = wa? for any.
osi tive lnteger 4%, 'then wat - (A M At , and copversely, What is
the duat form.of this result foMa'w? :

.11 Prove that (a* ) ln: (4.19) 1s the Gnique solution to (4.16).and
thaz. - o '

4.12 Provq that for every L >,k (A M v\(A ) LA (AR') and -
A= (A) A (A lL

4, 13 Use a8 sequence\of full rank f’ctorlzations

A' Blcl"-

to show that A* (A ~)* =’A ,(A )+ and (A£)+A2’ = (A ) Ak for all 2.>k

A

.4 (Contlnuation): Show that




.

(At’ [" Car-1

N ) [!2]( )«.gk +
A ne.[(cB ‘nB |
jmp 1] KK {=1 l‘

4.15 Construct (Az) and (Az) 3 for the matrix A in Example 4.

4.16 .Prove that if Ax = b*is a consistent system of equations. ?nd if A
has index,one, then the general solution of A"x = b,'n = 1,2,000,
‘ can be written as x = Ay "% (1-a A)y where y is arbitrary, (Note
that thls expresslon reduces tox = A "b when A is nonslngnSlar.
The terminology "power Inverde” of A was chosen since we use
powers_of AR in a slmnlar manner to obtaln a particular solu\tlon

Qfo-b) .

4.4 Miscellaneous Exercises

A *

4,17 l.et B and W be am/ matrices, mbyn and riby m, respective
let p be any posltlve integer.

at there is'a unique matrix X such that
?

(aw)dx\r- (m,l)d BWX = XWB, av(aw)dx = x;

a uniq trix X such‘that

= oW P, W= we(uB) P, xa(8w)® Tx = x,

and?hat the unique X which satisfles both sets of equatlons
Is X = a(ws)d".

Show that 1f p > 1, q> 2l and r > 0 are integers such that
9.+ 2r + 2 =p, and if (w8)9 -'(VB) when q,= -1, then .

by 5 800091 () ) (8(wB) %) 2

(Co‘i’nsequently, the unjque X in &, 17a is the, (WB)" W-weighted
Drazin inverse of B(ws)J.) - g
A}

2

4.18 Prove that if A and B are any matrices such that A= 8;2, then
Md = Bﬂd.

7%
Q - i _-- ',Aa:*--——"

" . - o
; lC 7. n-""'ﬂ“—
B o
] e e
o

;--‘-“"

 LRICH =y
' .



A < R
gt . B [ 4 “
)

. , . . -
S.1 Inverses That Are Not Unique

/ -
Given matrices A and X, subsets/ﬁ?/ghg relations’ in

* (1.1) to (1.5) other than those used to define A* and Ad
provide additional types of generalized inverses. Although
not unique, some of these generalized inverses exhibit the
essential properties of At required in various applications.,
For example, observe that only the cod%ition AXA = A was
needed to charact;rize consistent systems of equations
Ax = b by the relatigh AXb = b in (2.4). Moreover, if A |
and ¥1also satisfy )H = XA, then XA = A+A, by Exercise

* 4.10, and with A*b a’particulgr“gglution of Ax » b, the
general solution in Exerci§9/2.21~can be written as’

x = A'b + (FXA)y

-

. with the orthogo

2
I

E

Aruntoxt provided by Eric:

P .
decomposition

= [[A*[ 12 + || (1-xa)y] 2.

~
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(Note that”thi$ is an extension of the special case.of
matrices with fu’row rank used in the proof of Theorem 2.)
. In this section we consider relationships among certain of
. these generalized inverses in terms of full rank factoriza-
t@ons,éand illustrate the construction of such inverses with
numerical examples. -

, For any A and X Such that AXA = A, rank (X) > rank (A),
* = whereas XAX = X implies rank (X) < rank (A). The.‘.folldwing
lemma gharacterlzes solutions of AXA = A and XAX = X ih
terms of group inverses. ‘
At * te
. LEMMA 13: For‘\any full rank factorizations A = BC and
X = YZ, AXA = A and XAX = X if and only if AX = (BZ)'BZ and .
xa = (vo)'vc. ' .

Proof: 1I1f A = BC and X = YZ are full rank factorizations
where B is mbyr,.C is rbyn, Y is nbys and Z is sbym, then
AXA = A implies : )

(5.1) -+ CYZB = I . '
and XAX = X implies .
-
(s.2)  ZBCY = L. , " e
" Consequently, withr = s, 2B = (CY)'1 so that:
AX = BCYZ = B(zB) !z = (Bg)'hz
.~ and v ’ )
- -1 '# ’
XA = YZBC = Y(CY) "C.= (Ycy'yc, .
by Lemma 10. c, .
- Conversely, since Z and C have full ro6w rank, (BZ) BZB=B

v and (YC) YCY = Y. Hence AX = (BZ) BZ gives, AXA = A, and
= (veytyc gives xax = x. W

* It should be noted that the rélation in (5.1) is both *
necessary and sufficient to have AXA = A, and does not
require that YZ is a full rank factorization. Dually, (5.2)
is both necessary and sufficient to have XAX = X, and BC

‘ -72- . '
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need not be a full rank:factorization._  Observe, moreovex,
that given any matrix, A, with full raék factorization A = BC,
then for any choice of-Y such that CY has full column rank,
taking Z = (CY)LBL with QCY)L any left inversg of CY and B
any left inverse of B gives a matrix X = YZ such that (5.2
holds. Therefore, we can alwgys con;trﬁct matrices, X, of
any given rgnk not exceeding the rank of A with XAX = X. On
the other hand, given full rank factorizations A = BC and

X = YZ such thats AXA = A and XAX = X, then for any matrix U
with full column rank.satisfying CU = 0 and for any matrix V
with ,@fVA defined we have -

/ .
(5.5 A(X+UV)A = A.
NoW

3

L -

(5.4) X+ UV = [Y‘),u] [ZJ .o |

\

where the first matrix on the right:hand ;ide has full column
rank”‘(Exercise 5.6). Thus, for any choice of V such that

the second mggaix on the riﬁht-hand side of (5.4) has full
row rank, (5.3) holds and rank (X+UV) > rank (ﬂ?.

The following example illustrates the construction of
matrices, X, of prescribed rank such that A and X satisfy at
least one of the conditions AXA s X and XAX = X. .

Example 5.1 -

Let A be the matrix
6 4 0
A= |3 s -3

‘3 3 '1 v

from Exaﬁple 4.1 with full rank fa%torization

z \ \;
BC ; e 2 -
A~ I \
11 : , .

- Then rank (A) = 2, and X, = Q satisfies X AX_ = X trivially.
To construct a matrix, Xl, of rank one such that Xlel = Xl,

\ - '-73-
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note first that

\ 5.5 1oz 0] . PR
: ) B, = ¥ :
o L3, a1 o

is a left inverse of B. Now if yH = {3 4 5], then

) I-2 -
- Cy = 7 (c ‘-}3-1 91, M = L9 -11 o0
y~\4£§%iJEY) { 1, 2 797! . ]

so that '

3

. 8 -33 0

x1=yzH-Té-z76 -44  “of.
95 -55. 0] o

P
To nex{ construct a matrix® 2 Of rank two such that XZAXZ = va

(and Ehus AXZA = A), let

1 -1
. Y = |1 1i. . .
1 -1

L -

‘Then

o 4 R I
cYy = , (CY) " = ,
5 -3 Ts o

and with BL the left inverse of B in (5.5),

., L3

) Cz e en s 1[5 2 o o
Z = (CY - . N
. L 80540 o
so that '
5 -4 0
’ '8 .'. 1
. Xz YZ 1|0 6 0f.
5 -4 0
Finally, to sonstruct a matrix,‘xs, of rank three su;z that
A A = A, let ¢ :
2 0
. 1 - .
u= (-3 y V = 3‘0- 0
-3 1
\ .
‘ » . . 74~ .
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where ueN(C). Then

. N

S -4 2
= H = 1 -
X3 X2 + uv ki) 0 6 -3

: 5 -4 -3 %

with det X3 = .5,

That the procedure in 'Example 5.1 can be extgnded to
construct matrices -X of given rank g%t1sfy1ng (AX) A¥ and
at least one of the conditions AXA = A and XAX = X is
4 apparent by observing that CY with full cplumn rank impljes

BCY has full column rank Hence, taking A BO(BCY) .(S 2)

holds and AX = BCY(BCY)' is Hermitian: ‘In’ the following

example we indicate matrices Z in.Example 5.1 so that- the

resulting matrices Xi satiéfy (Axi)H = Axi, is= 1,2,3;

Example 5.2 N . ne. >
Given the matrix A and full rank factorlzation A = BC
in Example 5.1, again let y = {3 4 5]. Then

&

~

- T34 .
Ay = BCy = [14], 2H 2 (ay)* = all? 7 4
: 16 ’ ‘ .
) ¢ R
* and : . .
’ 51 21 24 . '
. 1 [
; XL =yz/ = 557 F8° 28 32
. 85 °35 ' 40

“satisfies Xlel ~'X1 with AX, hérmitian'and rapk (X,) 2],

»

Géntinuing|, if we again use . :
‘ o ontay .
R Y= |1 1| | \
. 1 -3 ¢ -
[} Y,
then ) Y . .
i
. 10 -2 . is s 7
AY = BCY = S- §{, Z = (?Y) 770 20 35
s 1] % ’ e
. ” \ I 4
- ‘- -M- . *
) O ‘ ) 2 . o .
f{}_i . ot 5"" o




and

< 18 -15 1
. . - 1

XZ = Y7 m -2 20 6

L - s A5 1

with X,AX, = X,,AX, Hermitian and rank (xy) =\2

' Now‘tak.mgsuH = (2 -3 +-3] in the previous example
nd vie= 1711000 1 1] gives ,
. ' .18 -13 3 . .
' Xo= X+ wf e el 173
374 51 ,
18 -18 -2 .
with AX;A = A, AX; Hermitian and det Xy = -10. * . ),

, * Given any full rank factérization A= BC, first choosing
a matrix Z so that ZB tand thus ZBC) has full row rank pro-
vides a completely dual procedure to tha{ in Example-5.1 in
which Y = CR(ZB)R w1th CR any r1ght 1nverse of C and (ZB)R
any right inverse of ZB. Taking Y = (ZBC)) then gives , .
mttrlces analogous to those in Example 5. z;1n which we now, R
* have X; A) = x A 1 =1,2,3. . a*

=, .

X 'A“ We“conclude this brief 1ntroduct1on "to generalized

e inverses that are not pnique by observing tﬁat the questiaqn

T :of.repreaeﬁkinb all spiutions of particular subsets of equa- .

. *tions such as AXA = A or'XAX = X and AX or XA Hermitian has
not been gonsidered. Also, although dbviqus properties of “h
matrices A and X satisfying AXA = A with~AX and.XA Hermitian

-~ ‘ ire included in the exercises, the more difficult quest1on

* “*Wwhen AXA = A s replaced by the nonlinear relation XAX = X,
is only ;reated superficially. The interested reader is
prgea to cqnéult (2] for a detailed discussion of these

, topics. . ‘, T * . »
Exerclses ‘ . )
5.1 Show that any twa of the condislans AXA = A, XAX'= X, ' .
rank (X) = rank (A) imply the third. Y -
"5.2. Show that XAX = A¥ 1f AXA = A, (AX)! = AX arid (XA)Y = xa. - -
" , * * '76’ . :‘
0 - N o " <

- T . . .




_2BC = Y
L - b. Given the matrix 1 . ’
- : 2 1 -1 ’
A= 10 4 3],
) 1 -2 ‘

Let A = BC and X = YZ where ‘Y and ZH have full column rank.

a. Show that XAX = X and (AX)" = Ax if and only if BCY = 2*
- Dually, show that1XAX = X and- (XA)H = XA if and only if

)

«X]AX] = X] and

sy e (AX ) ' Also, construct a ma
) H

thf} ngxz = X, and (sz) =

5:4 et A = 8C and X = YZ wheye

Why is it not of ‘interest to. conSider also the special ~
cases when (ZB)-] or (C.Y)-' exist?

c. What equations must Y and 2 satisfy if XAX = X and AX = XA?

5.5 Verify that the inverses constructed in Examples 5.1 and 5.2
‘satisfy the ‘required proper.ues

]

* 5.6 Proye that if W= [u.u)rs any matrix with, CY nonsingular and
® columds of U in N(C). Hnearly Independent, then W has full column
rank, S

.

L4 .o
5.7 .Prove that jf A = BC is any full rank factorization of a square
matrix, -then CB = [ if and only if_A is ddempotent.

* 5.8 Show that 1f A = BC is any full rank factorlzation and Y is any
matrix such that Cy, s ;onsingular At [(AY) A] (AY) .

7 ~ *
wl . ’ -
. .
| . 84 /.
Q '
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Chapter 1

Ex. 1.1b: «xyH L] ny implies y = ax where

. a = Ji"x%# 0. . ‘ - - -
- Hxt] . ) ‘
then Gxx!! = axxl, .. . T

Ex. 1.2¢; If sA“A cA" then (pAM-caM)a(gt-c ) - 0.

——

Ex. 1.3a: lf P is the matrix with columns XpreeerX , and A is the,
diagonal matrix with diagonal elements A', T=1,...,n, AP = pj, Hence

A= (PA)PH since P is unitary. l.gc: If A s Hermitian, /\ E, = AIEI’ )
i -l e / * .

v

P

) . . -
Ex. 1.5b: ‘lf u Is the column :Jector with k elements eacheequal to

unity,
- v
W H . ;
. LI n .
i A - L
s n 1 “u=~ ‘ k ’ X
, . = o=l

for all n é 2. l.§c:" Subtract the last row of An from each of the " %
— hmad . « =
: » -79- -




-

- 1 4
preceding rows and expand the determinant using cofactors of the first

dotumn., 1.5d: ' An-] has all integral elements.

>

. 'Ex. 1.6a: .Let X = 1 + axxH.and determine 3 so that AX = [. 1.6b: 0

A= 6[! +£39-xxﬂ] where x = ITZ'_—uM,. j.6e: Ax = (l+k)x and Ay = y.
0 -

1.6f: For any n > 2 the vectors P
T T 1] F 1] ,
i -1 1 . . 4

R . . . / 1 . !
1] Lo] Lo ‘ L_;(n-l)_ N “ ,
are orthogonal.
oS . . " <o
* , Ex. 1.7by Form XA first. i '

» s

Chapter 2 : t

Ex. 2.2: AZ =0, andsZa = 0 implies o = 0.

Ex: 2.5: Xy is orthogonal to every vector zeN(A). Hence \ -
2 B 2 .

eI = 112 Jag1 o eyl : .

Ex. 2.6: Let A be mbyn with rank r, so that dim N(A) = n-r. Now assumé

rank (AMA) = k < r, and let L IEPRRNE I denote any basis of N(AHA). Then

implies Az; =0, i :f! ...,n-k. Hence dim N‘(A) 5_n-k > n\Q a contra- Lo
diction. , v N

. - . - M ®
v ‘e
- Ex. 2.10: Use Exercise 2.9 and apply Exercise 1.6a. - /

0= (zi,AHAzi)_' (Az;,Az;) = HAZ;HZ ., - ) .
h Y . ~

.
. PR

3 + N ) -
Ex, 2.1lia: Use Exerclse‘.lo to=obte|n A'b and Exercise 2.2 to form .-
aeN(A). "2:11d: - tn mrs“‘case

Q ’ "0\0‘86 s : e ) 7
FRIC.. ... o . R
e eme s » w )

- P .
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Ex. 2.13: A= uv"l is a ful] rank factorization. Use Theorem 4 and the
remarks in the final paragraph of Section 2,2. ) ’

Ex. 2.14: _ . n :
x=Ab+ (xizi "

i=] ’

is an oﬁf;ogonal decomposltion of any vector x. Now take sthe inne?{

product of X with any vector z;

Ex, 2.15: For any | = l .,m, column § of At is the minimal norm solu-

tion of Ax; = e,. ’
- R

Ex. 2.20e: use Exercise i.2¢ and Its dual that BAA = CAA if and only
if BA = CA. 4

£l

?

Chagter
[& UK x is a full rank factorlzation

/™ l if and only if < £ 0.

.-,

- H

[ X“qH
(p+)1 -upup" ,

u

s

PR A
Now i f x - A y is written in terms of co@ponents as ;H = (m
L

. then
{ ] im) j-] ‘j

g Y;J —7-TT}E g Ylj' F=1,...,p.

=) J-l

-1 & .
3.Hc: Hlthlzfmin(k) » ! ang z = EN(A) aill SO]uthnS of Ax = Yy can

. ! f . u
+ . P .

. { N ~
. Pewritten In terms.of components as m =m = a and t, = t, +-a,
l_:_l,...,p,*where a is arbitrary.




Ex.. 3.13: AxXpy = Aul(xXy).

(S

Ex. 3.15a: “n = XI andl pH. u;. . o

3. 14b: Let zI reenaZy be any complete orthonormal set of eigenvectors
of I - W' where z|,...,2, correspond to eigenvalye A = | and

zrﬂ,...,zn correspond to eigenvalue A = 0. Combine these vectors with
those in the hint for Exercise 1.6f. . )

o '
——— .

Ex. 3.15: Use Gauss elimina;lon"to reduce T to blockeform
H
If-\ X ep

QXt.n‘N

v X,[°'Ip—|]
L]

Ex. 2.‘2:." z; ij corresponds to efgenvalue one if and only if

v

‘—/l'(z‘ij) =0. - '(

. 3.20: AX=( and XB- D consistent implles M ¢ = C and DB 8 = D.

-,

L4




Chapter 4 *
Ex. 4.2a: '(BHB)']BH - ("), 4.2b: The relatidn is reflexive, by

JLemma S(e). If € is alias to B, then L= 88*c = B+H(BHC) is a full rar:l'(
factorization and the relation is symmetric since (B+H)+ = 8", Transi-

tivity follows by a similar type of argument. .
Ex. 4.9: with v = 8% (8,), = 8(es) 7 = 51(s%8)")2.

Ex. 4.11: Use an argument similar to tr.@t one employed to establish
uniqueness in '(2.2). . .
Ex. h.iS: if A=BC is a fuil ra;tk factorization and A has 'index ?n;,
A = cMe e and A’,;"- B(ce)"a*
by E;ercise 414, Then
AA=C'C = :+A, A" = 8(c8) %" and ATn,

for all n > I, K
L4

Ex. 4.17: Show first that X = B(VB) P satisfies ail six equations.
_Then show that the first set of threo,equatlons lmp]ies the second set,
and that the second set |mpl|es X has the given form. .
\ } .
Ex. 4.18:™1F A2 =82 then A8 = A8, V30 that A. =" A do and B, = AAB,.

d d d d’ ‘d’dd' d

-

Chapter § \ ¢
Ex. 5.2: ‘Use both the direct Epd dual form of Exercise 4.i0 with & = 1|,

g~

] 2 2 : Applying Exercise 4.10 to XAX = X and (AX)H = AX glves
AX = X X = Z Z.

Ex. 5.4a: 8 has fuli column ra k. 5.4b: Then X = ’

Ex. 5.8: AY = B(CY) is a fulkl rank factorizgtion.

N
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